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Abstract

Microscopic traffic simulation plays a crucial role in
transportation engineering by providing insights into in-
dividual vehicle behavior and overall traffic flow. How-
ever, creating a realistic simulator that accurately repli-
cates human driving behaviors in various traffic conditions
presents significant challenges. Traditional simulators rely-
ing on heuristic models often fail to deliver accurate sim-
ulations due to the complexity of real-world traffic envi-
ronments. Due to the covariate shift issue, existing imita-
tion learning-based simulators often fail to generate stable
long-term simulations. In this paper, we propose a novel ap-
proach called learner-aware supervised imitation learning
to address the covariate shift problem in multi-agent imi-
tation learning. By leveraging a variational autoencoder
simultaneously modeling the expert and learner state dis-
tribution, our approach augments expert states such that
the augmented state is aware of learner state distribution.
Our method, applied to urban traffic simulation, demon-
strates significant improvements over existing state-of-the-
art baselines in both short-term microscopic and long-
term macroscopic realism when evaluated on the real-world
dataset pNEUMA.

1. Introduction
Microscopic traffic simulation is a cornerstone in trans-
portation engineering. It enables engineers to predict and
analyze individual vehicle behavior, providing crucial in-
sights into how alterations in road structures or traffic man-
agement strategies might influence overall traffic flow; it al-
lows for the testing of diverse scenarios without disrupting
real-world traffic; and it enhances safety by pinpointing po-
tential hazards and devising strategies to mitigate risks. By
leveraging simulations, engineers can optimize traffic flow,
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reduce congestion, and enhance overall efficiency, proving
particularly advantageous in designing or enhancing road
networks. Using the simulation data, policymakers and
urban planners can make informed decisions aligned with
community needs regarding transportation infrastructure.

However, generating realistic and accurate simulations
that can simultaneously replicate the microscopic response
of human drivers in various traffic conditions and long-term
macroscopic traffic statistics is challenging. In recent years,
significant efforts have been invested in developing realis-
tic traffic simulators with the goal to accurately model hu-
man driving behaviors. Traditional traffic simulators, such
as SUMO [24], AIMSUN [2], and MITSIM [44], typically
rely on heuristic car-following models like the Intelligent
Driver Model (IDM) [42]. However, despite carefully cal-
ibrating parameters, the rule-based models often fail to de-
liver accurate simulations due to the complexity of real-
world traffic environments [12, 30]. Factors such as the road
structure, neighboring vehicles, and even driver psychol-
ogy can influence the decisions of human drivers, making
it challenging to achieve accurate simulations [7, 27, 43].

In pursuit of realistic traffic simulations, researchers
have turned to neural networks to represent the driving
model through imitation learning (IL) from human demon-
strations. Most traffic simulation approaches [4, 34, 41]
leverage behavior cloning (BC) [32] to learn a driving pol-
icy by minimizing the disparity between the model out-
put and the human demonstrations in training data. How-
ever, BC is hindered by covariate shift [37], where the
state induced by the learner’s policy progressively diverges
from the expert’s distribution. Existing BC-based simula-
tors have succeeded in short-term (less than 20 seconds)
simulation applications like autonomous driving tests but
often fail to generate stable long-term simulations.

To address covariate shift, existing methods such as
DAgger [37], DART [25], and ADAPS [28] incorporate
supervisor (humans or principled simulations) corrections



at the learner’s or perturbed expert’s states. However, hu-
man supervision can be problematic due to intensive labor
and judgment errors, and principled simulations may not
account for heterogeneous driving behaviors. Recent traf-
fic simulators [40, 46] propose using inverse reinforcement
learning (IRL). These methods, such as generative adversar-
ial imitation learning (GAIL) [17] and adversarial inverse
reinforcement learning (AIRL) [13], learn a reward func-
tion using a discriminator neural network within Generative
Adversarial Networks (GANs) [14]. The policy network is
trained to maximize the learned reward through online re-
inforcement learning (RL), enabling agents to handle out-
of-distribution states. However, directly applying GAIL to
traffic simulation can be problematic [5]. The dynamic na-
ture of the environment in the multi-agent system can lead
to noises during policy learning, resulting in highly biased
estimated gradients. Furthermore, training the discrimina-
tor in GAIL is challenging due to the instability and sensi-
tivity of hyperparameters during min-max optimization.

To address the issue of covariate shift in multi-agent im-
itation learning without depending on costly expert super-
vision or unstable discriminators and multi-agent RL, we
propose Learner-Aware Supervised Imitation Learning
(LASIL) for tackling the covariate shift problem during pol-
icy learning. We mitigate the distribution shift between ex-
pert and learner state distribution by augmenting the expert
state distribution. However, there is no expert supervision
at any augmented state, so we ensure that an augmented
state is close to an expert state such that the future trajectory
of the expert state can serve as the target trajectory for the
augmented state to constrain the learner within the expert
state distribution. Hence, our goal is to augment the expert
state to cover the learner’s state distribution while remain-
ing close to the original expert state distribution. To achieve
this, we use a variational autoencoder (VAE) [21] to simul-
taneously model the distributions of both the expert and
learner states. By minimizing the VAE’s latent space reg-
ularization loss of modeling both distributions, we project
the expert and learner states into a unified latent space. And
by minimizing the VAE’s reconstruction loss, the resulting
reconstruction leveraging such learnt latent space will re-
semble both expert and learner state distribution. As a re-
sult, when inputting expert states into the trained VAE, we
obtain a learner-aware augmented expert state.

In practice, we divide an agent’s state into two parts: past
trajectory and context, i.e., other features in the state includ-
ing vehicle type, waypoints, and destination. We observe
that the distribution of the context is consistent regardless
of a learnt policy due to the static features of traffic con-
ditions embedded in the context, leading to less covariate
shift. Therefore, we propose a context-conditioned VAE
to model the context-conditioned trajectory distribution of
both expert and learner states. The decoder of the context-

conditioned VAE will receive both the latent variable and
the context, and yield only the trajectory information.

In summary, our contributions are as follows:
• We propose learner-aware supervised imitation learning

(LASIL) to achieve stable learning and alleviate covariate
shift in multi-agent imitation learning.

• We propose a learner-aware data augmentation method
based on a context-conditioned VAE that generates
learner-aware augmented expert states.

• Our approach is tailored for urban traffic simulation.
To the best of our knowledge, it is the first imitation
learning-based traffic simulator that can reproduce long-
term (more than 10 minutes) stable microscopic simula-
tion, achieving 40x simulation length improvements over
previous state-of-the-art [4, 41, 46].

• We evaluate our method on the real-world dataset
pNEUMA [3] with over half a million trajectories. Our
approach outperforms state-of-the-art baselines in both
short-term microscopic and long-term macroscopic sim-
ulations. The code is available at https://github.
com/Kguo-cs/LSAIL.

2. Related Work

2.1. Imitation learning

Existing imitation learning (IL) methods can be broadly cat-
egorized into behavior cloning (BC) and inverse reinforce-
ment learning (IRL) approaches. BC [32] learns a policy
in a supervised fashion by minimizing the discrepancy be-
tween the learner’s actions and those of an expert. However,
BC suffers from the issue of covariate shift, where the state
distribution induced by the learner’s policy gradually devi-
ates from that of the expert. To address this, methods like
DAgger [37] and DART [25] request supervisor corrections
at the learner’s or perturbed expert’s states. Our method fol-
lows a similar supervised learning approach to DAgger and
DART, but does not require access to an expert policy.

Due to the challenges in obtaining expert supervision,
recent IRL-based methods utilize feedback from a neural
network-based discriminator to handle covariate shift. Typ-
ically, these methods involve an iterative process alternat-
ing between reward estimation and reinforcement learning.
Earlier IRL-based methods [15, 35, 39, 47] require fre-
quent dynamic programming processes, while recent ad-
versarial IL approaches integrate reward function learning
with policy learning using a GAN formulation. However,
both GAN and RL training processes are known to be un-
stable, sensitive to hyperparameters, and have poor sam-
ple efficiency [9]. Moreover, the discriminator can easily
exploit insignificant differences between expert and policy
samples, leading to undesirable performance [45]. In con-
trast, our method avoids the min-max optimization problem
and the sample-inefficient RL process, requiring minimal
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fine-tuning. Instead, we utilize the real future trajectory as
the target state to learn corrective behavior.

2.2. Imitation Learning-based Traffic simulation

Recent traffic simulators focus on enhancing realism by
leveraging imitation learning (IL) from human driving
demonstrations, which extend traditional BC and IRL meth-
ods to tackle the challenging multi-agent IL problem.

BC-based traffic simulators like TrafficSim [41] and
SimNet [4] typically begin by training a prediction model
and subsequently adjust the predicted trajectories to pre-
vent collisions and adhere to traffic regulations during sim-
ulation. However, BC-based methods face challenges in
achieving long-term simulation due to the covariate shift
problem. To mitigate this issue, we augment expert state
based on the policy distribution, enabling stable long-term
simulation. Additionally, we enhance performance by mod-
ifying the predicted trajectory during simulation through
road projection and ensuring smoothness from the current
state. Notably, we skip the computationally intensive col-
lision removal operation, prioritizing the capture of macro-
scopic long-term influence over micro-level details.

IRL-based simulators learn the underlying reward func-
tion of human driving behavior and derive the driving policy
by maximizing the learned reward. While adversarial IRL
methods theoretically address the covariate shift of BC in a
single-agent context through online interaction, its perfor-
mance deteriorates in the multi-agent IL domain due to the
dynamic environment, complicating the training process.
To tackle this challenge, approaches like PS-GAIL [40] and
PS-ARIL [46] adopt two-stage learning and gradually in-
troduce vehicles to the environment. Nonetheless, these
methods still exhibit significant undesirable traffic phenom-
ena, such as off-road driving, collisions, and abrupt brak-
ing. Building upon PS-GAIL, the reward-augmented imita-
tion learning (RAIL) method [5, 22] penalizes undesirable
phenomena by introducing a hand-crafted reward. How-
ever, maximizing the new reward does not guarantee the
recovery of human-like trajectories. Despite numerous en-
hancements to the original GAIL framework, these IRL-
based methods often struggle to produce stable long-term
traffic flow, as evidenced in our experiments. In contrast,
our method is a supervised learning approach, leading to
faster, simpler, and more stable learning of driving policies.

3. Background
3.1. Markov Decision Process

We model the human driving process using a Markov deci-
sion process (MDP) denoted as M = {S,A, T , r}, incor-
porating a time horizon of T , where S and A represent the
continuous state and action spaces respectively. A stochas-
tic function T : S × A × S → [0, 1] describes the system

dynamics, and r : S×A → R is a reward function. The pol-
icy π(a|s) determines the probability of selecting an action
a at a state s, and a trajectory τ = (s0,a0, . . . , sT ,aT )
represents a sequence of state-action pairs. The marginal
state distribution of a policy π is computed as ρπ(s) =
1
D

∑
s∈Dπ

δs, where Dπ denotes the set of states of size
D in trajectories induced by the policy π, and δs signifies
a Dirac distribution centered on s. Similarly, the marginal
state-action distribution ρπ(s,a) is computed.

3.2. Imitation Learning

In the application of IL for learning a driving policy, we as-
sume that all agents adopt the same policy. The objective
is to learn a policy π that minimizes the f -divergence be-
tween the marginal state-action distribution of the expert’s
demonstrations ρexp(s,a) and the learner policy’s distri-
bution ρπ(s,a). For example, BC optimizes the policy
to minimize the Kullback-Leibler (KL) divergence at the
expert state distribution Eρexp(s)[KL(πexp(a|s)∥π(a|s))],
while DAgger minimizes Eρπ(s)[KL(πexp(a|s)∥π(a|s))].
On the other hand, GAIL minimizes the Jensen-Shannon
divergence DJS(ρ

exp(s,a)∥ρπ(s,a)), while AIRL mini-
mizes the KL divergence KL(ρπ(s,a)∥ρexp(s,a)).

However, GAIL and AIRL often exhibit unsatisfactory
practical performance due to their optimization processes’
instability and sample inefficiency, which involve GANs
and RL. In contrast, BC only requires simple and stable
supervised learning but suffers from the covariate shift is-
sue, as it only minimizes the policy difference at the ex-
pert state distribution without guaranteeing performance at
the learner state distribution. DAgger addresses the covari-
ate shift problem but requires access to the expert policy.
To mitigate the covariate shift problem without depending
on the expert policy, we propose maximizing the transition
probability Es∼ρexp(s),s+ϵ∼ρπ(s)[T (s + ϵ, π(s + ϵ), s′)],
where ϵ is a small augmentation term. Note that our policy
learns to predict the distribution of the next state s′ instead
of the action. Our approach assumes that when the expert’s
original future trajectory can serve as supervision to guide
the agent back towards the expert distribution.

3.3. Variational Autoencoder

The VAE defines a generative model given by pθ(x, z) =
p(z)pθ(x|z), where z is the latent variable with prior distri-
bution p(z), and pθ(x|z) represents the conditional distri-
bution modeling the likelihood of data x given z. The learn-
ing objective is to maximize the training samples’ marginal
log-likelihood log pθ(x). However, due to the intractability
of marginalization, VAE maximizes the variational lower



bound using qϕ(z|x) as the approximate posterior:

log pθ(x)

≥ Ez∼qϕ(z|x) [log pθ(x|z)]−KL (qϕ(z|x)∥p(z))
:= −Lrec(x)− LKL(x),

(1)

where Lrec(x) represents the reconstruction loss, which pe-
nalizes the network for creating outputs different from the
input. LKL(x) represents the KL divergence loss to make a
continuous and smooth latent space, allowing easy random
sampling and interpolation. Intuitively, this KL loss encour-
ages the encoder to distribute all encodings evenly around
the center of the latent space.

4. Method
In Fig. 1, we present an overview of our method. Our model
comprises three modules: a VAE-based data augmentation
module, a policy network, and a post-processing (LQR and
on-road projection) module. During training, we augment
each expert data by generating a learner-aware augmented
expert state through the VAE’s reconstruction of its past tra-
jectory. Using this augmented state along with the origi-
nal future trajectory, we train the learner’s policy network
through supervised learning. During simulation, we roll out
the policy network with several post-processing steps in-
cluding sampling, projecting the trajectories onto the road,
and smoothing the projected trajectories.

4.1. State Representation

As human drivers make decisions mainly depending on
their surrounding information, we build a graph to model
the traffic system with each driving agent as its node.

Node: The state of each agent can be divided into two
components: the past trajectory sp and the context sc. In
practice, the past trajectory is composed of the agent’s po-
sitions at several past time steps, including the current time
step. The context includes its type, nearby waypoints’ po-
sitions and corresponding road width, the traffic light status
of the road it is traveling on, and destination. The waypoints
are composed of the center points of the routing roads with
a fixed interval. We transform each agent’s state into its
individual coordinate system to learn a policy with trans-
formation invariance. To reduce the implicit covariate shift,
we set each agent’s current position adding a Gaussian per-
turbation as the origin and the x-axis directions pointing
towards the agent’s destination like [16].

Edge: When each agent’s state coordinates are trans-
formed from the global coordinate system to their individ-
ual coordinate system, information about the relative posi-
tions among agents is lost. However, a traffic model needs
the relative information of agents to understand how they
interact with each other. To preserve these relationships, we
introduce directed edges between neighboring agents. The

edge feature is the relative position of the destination node’s
coordinate origin in the source node’s coordinate system.

4.2. Learner-aware Data Augmentation

To address the covariate shift issue between the expert and
learner state distributions, we propose to minimize the ex-
pert’s and learner’s embedded state distribution difference.
In practice, we propose utilizing the same VAE to model
the expert and learner state distributions simultaneously. As
both the expert and learner state are projected to the same
latent space, the distribution of the state reconstructed from
the joint latent space can resemble both distributions.

In contrast to the past trajectory, the context distribution
is more challenging to model but exhibits less covariate
shift. Therefore, we propose using a context-conditioned
VAE to specifically model the context-conditioned trajec-
tory distribution rather than the state distribution. For each
expert or learner state represented as s = (sp, sc), we em-
ploy an encoder qϕ(z|sp, sc) to obtain the latent variable
distribution. We can sample a latent variable z from this
distribution by applying the reparameterization trick. Sub-
sequently, a decoder pθ(sp|z, sc) is used to reconstruct the
distribution of the past trajectory sp given z and sc. The
VAE is trained to maximize the variational lower bound,
which incorporates the context-conditioned log-likelihood
of both the expert and learner past trajectories:

LV AE = Es∼ρexp [L(sp|sc)] + λEs∼ρπ [L(sp|sc)] . (2)

Here, λ is a hyperparameter that controls the degree to
which the augmented context-conditioned past trajectory
distribution aligns with the learner’s context-conditioned
past trajectory distribution. The term L(sp|sc) is given by:

L(sp|sc) =Ez∼qϕ(z|sp,sc) [log pθ(sp|z, sc)]
−KL (qϕ(z|sp, sc)∥p(z)) .

(3)

For simplicity, we assume pθ and qϕ as multivariate normal
distributions with diagonal variance matrices. The prior dis-
tribution p(z) is set as an isotropic unit Gaussian N (0, I).

4.3. Edge-enhanced Graph Attention Network

We build all models in our approach including the VAE en-
coder, decoder, and learner’s policy network based on an
edge-enhanced graph attention (EGAT) network [11, 33],
which model interactions by aggregating neighboring node
and edge information using an attention mechanism. The
node features in the first layer are obtained by embedding
the node input with a fully connected layer and the node
features in the other layers are calculated by:

hl
i = σ

∑
j∈Ni

αl
ijW

l
[
h
(l−1)
i ∥eij∥h(l−1)

j

] , (4)



Figure 1. Overview of our approach. The processes with purple and red arrows handle only expert or learner data, respectively, while the
processes represented by black arrows apply to both data. Each state is a multi-agent state represented by a graph. Each model, including
the VAE encoder, decoder, and policy network, is implemented using an EGAT network.

where hl
i is the feature of node i in the l th layer, eij is

the coordinate origin’s position of node j relative to node
i, ∥∥ means the concatenation, W l is the learnable weight
matrix, Ni is the set of the first-order neighbors of node i
(including the node itself), and σ is a non-linear activation
function. The attention coefficient αl

ij indicates the impor-
tance of node j to node i, considering both node and edge
features, and is computed as:

αl
ij = softmaxj

(
σ
(
(wl)T

[
h
(l−1)
i ∥eij∥h(l−1)

j

]))
, (5)

where wl is a learnable weight vector, and normalization
is performed on the weights across all neighbors of node i
using a softmax function. After passing through multiple
EGAT layers, the node features at the last layer is fed into a
fully connected layer to obtain the outputs of the network.

4.4. Policy Loss

To train the learner’s policy network, we first sample a
learner-aware augmented expert state from the context-
conditioned VAE for each expert state. Then, the policy
network predicts its future position distribution over T time
steps, denoted as p(p̂m

1 , p̂m
2 , ..., p̂m

T ), which is assumed to
be a product of multi-variable Gaussian distributions:

p(p̂m
1 , p̂m

2 , ..., p̂m
T ) =

T∏
t=1

N (µ̂m
t , Σ̂m

t ), (6)

where µ̂m
t and Σ̂m

t represent the mean and covariance ma-
trix of the predicted position p̂m

t at future time step t. We
assume that there is no correlation between the position dis-
tributions at different future time steps. To learn the policy
network, we minimize the negative log-likelihood (NLL)

loss of all agents’ ground-truth future trajectories:

LNLL = −
M∑

m=1

T∑
t=1

log(N (pm
t − µ̂m

t , Σ̂m
t )), (7)

where pm
t denotes the ground truth position of agent m at

future time step t, and M is the total number of agents.

4.5. Simulation Process

During training, we simultaneously simulate (roll out) the
learned policy network iteratively to get learner state sam-
ples. Instead of directly updating each agent to its predicted
position, we apply several post-processing steps to the pre-
diction for better realism. Firstly, we sample from the dis-
tribution, and then project each sampled position onto the
nearest on-road point. Then, we smooth the projected tra-
jectory with a linear-quadratic regulator (LQR) [1] by min-
imizing the total commutative quadratic cost of a linear dy-
namic system described by:[

p̃m
t+1

ṽm
t+1

]
=

[
I D
0 I

] [
p̃m
t

ṽm
t

]
+

[
D2

D

]
ãm
t , (8)

where D is a diagonal matrix with the interval of each
time step as diagonal entries, and p̃m

t , ṽm
t , ãm

t represent
the LQR-planned position, velocity, and acceleration. The
system is subject to a quadratic cost function given by:

J =

M∑
m=1

T∑
t=1

∥p̃m
t − p̄m

t ∥2 + ηa∥ãm
t ∥2, (9)

where the projected predicted position p̄t
m is considered as

the target pose, and the hyper-parameter ηa is used to pe-
nalize high acceleration. Finally, each agent is updated to
the first position of the planned trajectory.



4.6. Training Process

At each training step, the policy network is trained to max-
imize the probability of the expert’s future trajectory us-
ing its context state and history trajectory augmented by
the VAE as input. Simultaneously, the VAE is iteratively
trained to reconstruct the expert and learner data. The ex-
pert data are the same as the policy network’s training data
before augmentation. The learner data is sampled from a
replay buffer. Every N training steps, we empty the replay
buffer and roll out the current policy with post-processing
for S time steps to generate the learner data and store it
in the replay buffer. During the roll-out, we start at a ran-
dom time step in the training dataset and apply our model
in a closed-loop manner. At each time step during the roll-
out, we sample a future trajectory for each vehicle from
the Gaussian distribution predicted by our policy network,
project the predicted trajectory onto the road, smooth the
on-road trajectory with LQR, and finally update the vehicle
to the first position of the smoothed trajectory.

5. Experiment

5.1. Dataset

We utilize a real-world urban dataset called pNEUMA [3],
which was collected by 10 drones in Athens over a span
of 4 days. The dataset encompasses over half a million
vehicle trajectories within a large area encompassing over
100 km of lanes and approximately 100 intersections. The
recordings were conducted at 5 intervals each day, with each
period lasting about 15 minutes and a data collection time
interval of 0.04 seconds. To enhance computational effi-
ciency, we adopt a time step of 0.4 seconds. The dataset is
divided into a training set, comprising recordings from the
first 3 days, and a validation/test set, consisting of record-
ings from the final day. Notably, we choose not to utilize
other popular traffic datasets like NGSIM [8] or HighD [23]
or autonomous driving datasets like Lyft [18] or nuPlan [6],
as they only encompass samll-scale scenarios. This limita-
tion makes it inadequate for evaluate macroscopic realism.

5.2. Metrics

We evaluate the realism of our simulator by measuring the
similarity between the simulation result and real data. Dur-
ing evaluation, each vehicle enters the simulator at its first
recorded time and position, and is controlled by our simu-
lator to complete its recorded route. When an agent reaches
its final recorded position, it is removed from the simulator.

Short-term microscopic: Following [5, 40], we conduct
a short-term microscopic evaluation by simulating for 20
seconds from a random time step in the test dataset. We
first measure the similarity between the simulated and real

data using position and velocity RMSE metrics given by:

RMSE =
1

Ts

Ts∑
t=1

√√√√ 1

M

M∑
m=1

∥smt − ŝmt ∥2, (10)

where smt and ŝmt were the real and simulated value of the
position or velocity of the agent m at time step t, respec-
tively. Ts was the total simulated time steps, and M was
the total simulated agent number. Besides, we measure the
minimum Average Displace Error (minADE) to not pe-
nalize reasonable trajectory unlike the real one:

minADEN =
1

M

M∑
m=1

min
ŝn

1

Ts

Ts∑
t=1

∥smt − ŝmt,n∥2, (11)

where N = 20 is roll-out times. We also calculate the off-
road rate (the avarage proportion of vehicles that deviate
more than 1.5m from the road over all time steps). The
common collision rate metric is not used because we focus
on the long-term impact and the dataset does not provide
accurate vehicle size and heading information.

Long-term macroscopic: we also evaluate our model’s
long-term macroscopic accuracy on five periods for 800
seconds from its initial recording time. To measure the
long-term performance, we use two standard macroscopic
metrics for traffic flow data [29, 36, 38], namely road den-
sity and speed RMSE, in addition to the off-road rate. The
density of a road at a time step is calculated by dividing the
number of vehicles on the road by its total lane length, as-
suming that all lanes have the same width. Meanwhile, the
road speed is computed as the mean speed of all vehicles on
the road. To quantify the similarity between the simulated
and ground truth values, we still use RMSE, where the vari-
able M becomes the total number of roads.

5.3. Performance

We compare our method against state-of-the-art baselines:
SUMO [24]: we use the IDM model [42] as the

car-following model and mobil [19] as the lane-changing
model. We tune the IDM’s parameters for 6 types of vehicle
by minimizing the MSE between the IDM calculated accel-
eration and real acceleration using an Adam optimizer [20].

BC [32]: we learn our model directly by the BC method.
MARL [26]: we train our model using IPPO [10] as

the Multi-Agent RL algorithm, where the reward function
is composed of three parts: a displacement reward (average
distance between agent trajectory with GT trajectory), an
off-road penalty and a terminal reward.

MARL+BC [31]: we add a behavior cloning term in the
loss function while learning the policy with MARL.

PS-GAIL [40]: we let all vehicles share the same policy
parameter and critic parameter and learn the policy using
reward functions computed by GAIL.



Table 1. Comparison with baselines and ablated models on microscopic metrics for 20 seconds.
Model Position RMSE(m) Velocity RMSE(m/s) minADE20(m) Off-road(%)
SUMO [24] 41.25 7.00 24.20 0
BC [32] 40.08±1.61 6.74±0.37 22.02±3.98 33.43±3.10
MARL [26] 48.66±1.54 8.92±0.67 40.07±1.26 3.70±0.40
MARL+BC [31] 29.78±0.42 4.54±0.14 22.07±0.21 11.14±1.17
PS-GAIL [40] 34.78±0.43 5.33±0.12 27.86±0.33 7.65±0.32
RAIL [5] 31.62±0.65 5.51±0.09 24.51±0.41 2.57±0.47
LASIL (ours) 19.21±0.44 3.02±0.07 12.79±0.32 0.28±0.01

w/o Augmentation 21.62±0.54 3.34±0.14 13.81±0.37 1.31±0.18
w/o Context-conditioned 23.03±0.87 3.73±0.12 14.94±0.43 0.51±0.04
w/o On-road Projection 22.53±0.42 3.26±0.10 14.42±0.33 1.74±0.60
w/o LQR 22.62±0.43 4.05±0.15 14.02±0.28 0.22±0.02

Table 2. Comparison with baselines and ablated models on macroscopic metrics for 800 seconds.
Model Road Density RMSE(veh/km) Road Speed RMSE(m/s) Off-road(%)
SUMO [24] 52.70 5.52 0
BC [32] 61.51±1.53 5.38±0.21 42.15±5.25
MARL [26] 90.59±2.65 5.27±0.48 4.63±0.64
MARL+BC [31] 43.60±2.80 4.01±0.13 22.73±5.62
PS-GAIL [40] 54.06±1.23 4.03±0.05 13.24±3.20
RAIL [5] 54.45±1.89 3.89±0.11 2.92±0.38
LASIL (ours) 45.13±0.25 3.17±0.14 0.34±0.03

w/o Augmentation 55.65±0.44 3.73±0.23 9.62±1.40
w/o Context-conditioned 55.98±0.51 4.48±0.19 0.64±0.08
w/o On-road Projection 52.90±0.54 3.59±0.20 11.33±2.37
w/o LQR 61.68±0.96 3.54±0.16 0.47±0.07

RAIL [5]: we learn the model as PS-GAIL but with
additional displacement, off-road and terminal rewards.

We train and evaluate each model five times to obtain
the mean and standard deviation (std) of various metrics.
Note that we do not apply on-road projection and LQR for
baselines. We evaluate both short-term and long-term per-
formance, as shown in Tab. 1 and Tab. 2, respectively. Our
method achieves better results than all baselines in terms
of position and velocity RMSE, road density and speed
RMSE, with minor off-road rate.

5.4. Ablation Study

We conducted a series of ablation experiments to assess the
individual contributions of crucial components in our ap-
proach, whose results are presented in Tab. 1 and Tab. 2.

Augmentation: By removing our VAE module and di-
rectly learning the original expert state and action, we an-
alyze the importance of our data augmentation technique.
The results demonstrate that augmentation plays a vital role
in improving both short-term and long-term simulation per-
formance by mitigating covariate shift.

Context-conditioned VAE: To emphasize the signifi-
cance of modeling the context-conditioned trajectory distri-
bution rather than the whole state distribution, we replaced
our context-conditioned VAE with a naive VAE that directly

models the expert and learner state distribution. The ob-
served drop in performance demonstrates the challenges in
reconstructing the context distribution.

On-road projection: Our ablation study on the on-road
projection module aims to show its impact on reducing the
off-road rate. The results show that the on-road projection
module leads to a notable decrease in the off-road rate and
moderate improvements in other performance metrics.

LQR: Removing LQR module allows us to evaluate its
effectiveness. While LQR led to a higher short-term off-
road rate due to more constrained movement (driving off-
road due to inertia), its removal deteriorates other short-
term and long-term metrics, because LQR can smooth the
trajectory, thus leads to more realistic simulations.

5.5. Qualitative Result

In Fig. 2, we present the mean road density and speed
for real-world data, SUMO simulation, and our proposed
method over all time steps. The results demonstrate that our
proposed method surpasses the capabilities of the SUMO
simulator at replicating long-term macroscopic traffic pat-
terns due to our model’s enhanced ability to replicate the
typical microscopic driving behaviors over a long period.



Figure 2. Mean density and speed on each road over all time steps in the long-term evaluation. Our method’s density and speed hot-maps
have a more similar color to the ground-truth one compared with the SUMO’s.

6. Conclusion

In conclusion, we have addressed the challenge of creating
a realistic traffic simulator that accurately models human
driving behaviors in various traffic conditions. Traditional
imitation learning-based simulators often fail to deliver ac-
curate long-term simulations due to the covariate shift prob-
lem in multi-agent imitation learning. To tackle this issue,
we proposed a learner-aware supervised imitation learning
method, which leverages a context-conditioned VAE to gen-
erate learner-aware augmented expert states. We leverage a
context-conditioned VAE to simultaneously reconstruct the
expert and learner state. This approach enables the repro-
duction of long-term stable microscopic traffic simulations,
marking a significant advancement in the field of urban

traffic simulation. Our method has demonstrated superior
performance over existing state-of-the-art simulators when
evaluated on the real-world dataset pNEUMA, achieving
better short-term microscopic and long-term macroscopic
similarity to real-world data than state-of-the-art baselines.
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