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 A B S T R A C T

Electric vertical-takeoff and landing (eVTOL) aircraft, known for their maneuverability and flexibility, offer a 
promising alternative to traditional transportation systems. However, these aircraft face significant challenges 
from various perspectives, including the need to increase energy efficiency, enhance passenger experience, 
and mitigate noise impact on urban environments. While mathematical modeling-based approaches have been 
employed for flight motion planning, they often struggle to adapt to dynamic and complex environments. In this 
work, we introduce a three-dimensional motion planning method based on deep reinforcement learning (DRL), 
tailored for manned eVTOL flights through urban wind fields. Our approach considers three crucial aspects: 
aircraft energy consumption, passenger experience, and noise impact on urban environment. We modify the 
Proximal Policy Optimization (PPO) algorithm and design comprehensive reward function that considers 
these objectives. By incorporating energy efficiency, passenger experience, and noise impact into our reward 
function, our method demonstrates improved policy learning compared to existing approaches. Comparative 
experiments conducted under various wind conditions show that our method outperforms commonly used 
techniques, effectively optimizing multiple objectives in challenging urban environments. Code of our work 
are available at https://github.com/cgchrfchscyrh/eVTOL_RL/tree/main.
1. Introduction

Urban air mobility (UAM) is an efficient transportation system 
where everything from small package-delivery drones to passenger-
carrying air taxis operate over urban areas (Kelsey, 2023). The advent 
of eVTOL aircraft heralds a promising future for UAM, aiming to 
revolutionize transportation by reducing congestion, environmental 
pollution, and travel time. The continuous growth in urban populations 
and the corresponding increase in road traffic underscore the urgent 
need for innovative transportation solutions. Moreover, the integration 
of eVTOL into the urban fabric requires meticulous planning and opti-
mization across multiple domains, including energy consumption, flight 
duration, noise levels, and payload management, to ensure operational 
efficiency and public acceptance (Kleinbekman et al., 2018). Compa-
nies are making progress towards government approval and real-world 
implementation of eVTOL (Anon, 2023, 2024).

Unlike ground vehicles, which are restricted by roads and traffic, 
eVTOL has the freedom to choose from a wide array of flight paths. 
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E-mail addresses: liusongyang@ufl.edu (S. Liu), weizili@utk.edu (W. Li), hli111@utk.edu (H. Li), shuai.li@ufl.edu (S. Li).

However, this flexibility introduces variability in energy consumption 
and flight durations depending on the chosen route. Additionally, 
the complex wind patterns generated by urban landscapes and ter-
rain (Ware and Roy, 2016), along with other unpredictable environ-
mental factors, further complicate the task of planning and optimizing 
eVTOL flight paths (Hong et al., 2021a). 

Traditional mathematical models have been applied to aircraft flight 
path planning (Forkan et al., 2022; Chen et al., 2023), but they often 
face challenges in addressing risk assessment and multi-objective op-
timization, especially in densely populated urban areas (Babu et al., 
2022; Wang et al., 2023a). Moreover, these models can struggle to 
quickly adapt to changing environmental conditions. In contrast, ma-
chine learning-based approaches offer greater adaptability, robustness, 
and efficiency. They are particularly effective in managing dynamic and 
uncertain environments, adjusting to real-time changes, and are better 
suited for scaling in complex urban scenarios (Ramezani et al., 2023; 
Tu and Juang, 2023; Maciel-Pearson et al., 2019) (see Fig.  1).
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Fig. 1. Multi-objective motion planning of eVTOL aircraft flight, from origin to destination, through urban wind fields enabled by deep reinforcement learning. We consider eVTOL 
aircraft energy consumption and efficiency, passenger concern and noise impact on urban environment as objectives. We only study the flight phase, not takeoff and landing phase 
of eVTOL. Partial image taken from Rizzi et al. (2020), Pradeep and Wei (2018). Figure not to scale.
In this paper, our application scenario is eVTOL aircraft carries pas-
senger from an origin to a destination in a simulated urban environment 
with wind fields. We do not consider the takeoff and landing phases of 
eVTOL flight because the planning flexibility for these phases is limited 
compared to the free-flight portion, where more extensive planning and 
decision-making are required. We use a deep reinforcement learning 
(DRL) method to plan the eVTOL flight from three different perspec-
tives: eVTOL aircraft energy, passenger concerns and environmental 
impact. We explain the importance of the three chosen perspectives in 
following paragraphs.

Energy consumption and efficiency are critical for eVTOL flights 
in urban environments. Lower energy use extends flight range and 
reduces operational costs, while high efficiency ensures that flights 
are both sustainable and economically viable. In dense urban settings, 
optimizing these factors is key to minimizing environmental impact and 
making eVTOL operations practical and reliable.

It is a critical challenge to ensure the security of the electric and 
flying vehicle systems (Alqahtani and Kumar, 2024). For passenger con-
cerns with respect to a new transportation option, the most important 
factors are safety, followed by reliability, time savings, convenience 
and comfort (Edwards and Price, 2020). We choose the safety, time 
savings and comfort to be the three objectives for passenger concerns 
perspective. We explain the integration of these factors into our DRL 
method in Section 3.

For urban environment, noise is important. New noise exposure 
and annoyance from autonomously controlled vehicles could limit the 
success of integrating UAM into the transportation system (Rizzi et al., 
2020; National Academies of Sciences and Division on Engineering 
and Physical Sciences and Aeronautics and Space Engineering Board 
and Committee on Enhancing Air Mobility A National Blueprint, 2020; 
Holmes et al., 2017; Holden and Goel, 2016). If eVTOL noise is not 
properly considered, there is a risk that the rapid uptake of UAM 
aircraft may outpace the regulatory framework and ultimately fail due 
to a public backlash (Jackson and Bardell, 2023). Limiting the noise 
impact on the population at an early stage is crucial, even more so 
because the opinion of the population on drones still seems to be 
forming (Schäffer et al., 2021).

The three perspectives mentioned above are essential to the prac-
tical deployment and broad public acceptance of eVTOL, particularly 
when operating in complex urban wind fields. However, there is a 
research gap in the realm of eVTOL flight motion multi-objective 
optimization. Many existing studies focus on one or two perspec-
tives (Bhalla et al., 2024; Su et al., 2024; Nagashima et al., 2022), 
2 
while overlooking other crucial perspectives. To address this gap, we 
propose a multi-objective optimization approach that simultaneously 
considers the three important perspectives including energy consump-
tion, flight time, safety, passenger comfort, and noise. Our integrated 
strategy not only seeks high performance in technical terms but also 
accounts for the social and environmental impacts of eVTOL operations. 
Unlike traditional approaches that isolate these objectives, our method 
integrates them into a balanced solution, recognizing the intricate 
trade-offs and interdependencies among often competing targets. Our 
integrated approach represents a step towards practical and large-scale 
eVTOL deployment in complex populated urban areas, ensuring that 
both technical and societal requirements are effectively met.

The main contributions of this paper are listed as follows:

• We introduce a three-dimensional motion planning method for 
manned eVTOL navigating through urban wind fields. Our ap-
proach, enabled by DRL, considers three important perspectives: 
aircraft energy, passenger concerns and noise impact on environ-
ment.

• We modify Proximal Policy Optimization (PPO) (Schulman et al., 
2017) and tailor it to our purpose. We compare our modified PPO 
with the vanilla PPO to demonstrate our advantage.

• We design a RL reward function architecture for minimizing eV-
TOL energy consumption and maximizing energy efficiency. We 
compare our design with existing approaches to demonstrate our 
advantage. We further perform an ablation study to demonstrate 
the effectiveness of our reward function components.

• We analyze the factors need to be considered for eVTOL flight 
with passenger and design quantitative metric for evaluating the 
passenger experience and noise impact on environment. Then, we 
incorporate the energy, passenger concerns and noise impact into 
our reward function design.

• We conduct comparative experiments under various wind fields 
and RL algorithms, including the state of the art model-based and 
model-free RL algorithms. The results show that our method has 
advantages over other commonly used methods.

2. Related work

2.1. Motion planning

During movement, path planning plays an important role in achiev-
ing the autonomous operation of the vehicle (Zhao et al., 2024). Motion 
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planning for aerial vehicles typically relies on two main approaches: 
mathematical modeling and machine learning. Mathematical models 
often utilize heuristic algorithms, such as ant colony optimization 
for enhancing search capabilities in aircraft routing (Al-Habob et al., 
2021; Wan et al., 2023; Huan et al., 2021), or cuckoo search for 
designing energy-efficient paths in wireless networks (Zhu et al., 2021). 
Other examples include Chodnicki et al.’s aircraft model that considers 
forces and moments (Chodnicki et al., 2022), and the use of mixed-
integer linear programming for multi-vehicle path planning in urban 
environments with varying obstacle heights (Bahabry et al., 2019). 
Although these models can yield precise solutions, their computational 
intensity and complexity limit their practicality in real-time, dynamic 
situations (Yao et al., 2014; Yang et al., 2020; Zhang et al., 2020; Bai 
et al., 2021; Liu et al., 2021; Sandino et al., 2022; Zhou et al., 2023). 
On the other hand, machine learning methods are more adaptable and 
efficient, particularly in dynamic and uncertain settings, due to their 
ability to adapt to dynamic obstacles and varying conditions (Ramezani 
et al., 2023; Tu and Juang, 2023; Maciel-Pearson et al., 2019).

Among machine learning techniques, RL has proven effective for 
aircraft motion planning. For instance, Xu et al. developed a DQN-
based algorithm to navigate around obstacles (Xu et al., 2022), while Li 
et al. introduced a stepwise DQN approach to identify common features 
across navigation targets (Li and Liu, 2022). Wang et al. implemented 
a D3QN method for real-time aerial vehicle navigation (Wang et al., 
2022), and Luna et al. showcased DQN’s ability to achieve optimal 
mission coverage (Luna et al., 2022). Recent advancements have shifted 
towards Policy Gradient (PG) methods, which offer faster convergence 
and better adaptability. Techniques like Deep Deterministic PG (DDPG) 
have been used to adjust flight altitudes for aircraft (Qiu et al., 2022), 
and Twin Delayed DDPG (TD3) has been applied to optimize responses 
for obstacle avoidance (Liu et al., 2022; Zhang et al., 2023a,b; Hu 
et al., 2023). Given TD3’s sensitivity to hyperparameters, PPO has 
become the preferred choice due to its stability and efficiency in 
policy adjustments, making it well-suited for our task (Xu et al., 2024). 
Further, we implement the state-of-the-art model-based RL algorithm 
named TD-MPC2 (Hansen et al., 2023) and a recent model-free RL 
algorithm named Average-TD3 (Luo et al., 2024), to solve the motion 
planning with multi-objective optimization problem. To the best of our 
knowledge, this is the first implementation of the TD-MPC2 algorithm 
for multi-objective optimization in eVTOL flight motion planning. Oli-
vares et al. (2024) implement TD-MPC2 on fixed-wing UAV attitude 
control under varying wind conditions. However, their approach did 
not account for the impact of noise generated by UAV flight on urban 
environments.

2.2. Multi-objective optimization

Many real-world tasks involve multiple, possibly competing, objec-
tives. For instance, choosing a financial portfolio requires trading off 
between risk and return; controlling energy systems requires trading 
off performance and cost; and autonomous cars must trade off fuel 
costs, efficiency, and safety (Abdolmaleki et al., 2020). One common 
approach to multi-objective sequential decision-making problem is to 
adopt an axiomatic approach in which the optimal solution set is 
assumed to be the Pareto front (Akbari et al., 2014). However, this set 
is typically large, and may be prohibitively expensive to retrieve (Hayes 
et al., 2022).

Another common approach, the scalarization method, makes the 
multi-objective function create a single solution and the weight is 
determined before the optimization process. The scalarization method 
incorporates multi-objective functions into a scalar fitness function 
as shown in the following equation (Gunantara, 2018; Murata et al., 
1996):

𝐹 (𝑥) = 𝑤 𝑓 (𝑥) +𝑤 𝑓 (𝑥) +⋯ +𝑤 𝑓 (𝑥)
1 1 2 2 𝑛 𝑛

3 
Such methods have been demonstrated to be effective in using RL 
methods to deal with aircraft control tasks. For instance, researchers 
design and integrate linearly combined RL reward function into an au-
tonomous system that can race drones at the level of the human world 
champions (Kaufmann et al., 2023). In this work, we choose to use 
the linear scalarization method. To deal with the multiple objectives 
of our application, we combine all the important aspects together into 
a single scalar additive reward function. We assign numerical rewards 
or penalties to events that can occur in the environment.

Many researchers have studied MOO problem in the realm of air-
craft. Ye et al. formulate three optimization problems: a sum-throughput
maximization problem, a total-time minimization problem, and a total-
energy minimization problem in rotary-wing unmanned aerial vehicle 
(UAV)-enabled full-duplex wireless-powered Internet-of-Things (IoT) 
networks (Ye et al., 2020). Yu et al. jointly optimize three objectives: 
maximization of sum data rate, maximization of total harvested energy 
and minimization of UAV’s energy consumption in UAV-assisted IoT 
network (Yu et al., 2021). Wu et al. study the tradeoff between 
the energy and time consumption for UAV-enabled wireless-powered 
communication network (Wu et al., 2019). Song et al. propose an 
evolutionary multi-objective RL algorithm to minimize the task delay 
and the UAV’s energy consumption, and maximize the number of tasks 
collected by the UAV in a mobile edge computing system (Song et al., 
2023). However, none of these works have treated the noise production 
of aircraft as one objective to optimize, which can harm the passenger 
comfort and the health of nearby urban residents as shown in Table  1.

2.3. Reward function design for energy

The reward function design is critical for RL method. To lower 
the energy consumption, there are two common approaches: ‘‘Direct 
energy consumption’’ (Hong et al., 2021b; Yu et al., 2021; Song et al., 
2022, 2024; Liu et al., 2023; Zhang and Cao, 2022; Guo et al., 2023) 
and ‘‘Energy efficiency’’ (Abedin et al., 2020; Liu et al., 2019, 2018; 
Omoniwa et al., 2022; Dai et al., 2021; Chen et al., 2020; Fu et al., 
2021; Li et al., 2021; Qi et al., 2020; Nie et al., 2020). ‘‘Direct energy 
consumption’’ means directly using the product of a predefined weight 
𝑤 and the value of energy consumption in current training step 𝐸 to 
be the reward signal 𝑅:
𝑅 = 𝑤 ∗ 𝐸

‘‘Energy efficiency’’ means dividing the gain 𝐺 by the energy consump-
tion 𝐸:
𝑅 = 𝐺∕𝐸

The definition of the gain can be adapted to different application 
scenarios. For example, for communication related work, the gain can 
be the wireless data received by drone in a short time period. In 
this work, the gain is defined as the distance (m) that the agent can 
approach the destination for every unit of energy consumed (kWh).

Moreover, some researchers have proposed unique design different 
from the two common approaches, such as normalizing energy con-
sumption with specific math equation, introducing virtual energy queue 
and compute the reward based on the state-of-charge level (Qi et al., 
2019; Arani et al., 2021; Do et al., 2021). We name the reward function 
design in Arani et al. (2021) as ‘‘Math’’. The reward function for each 
UAV is defined as follows. 𝜂𝑢,𝑐 and 𝜂𝑢,𝑒 denote the weight parameters 
that indicate the impact of throughput and energy consumption. 𝜙,𝜑, 𝜖
are the adjustable control parameters for the Gompertz function 𝐺(𝑡).
𝛶𝑢(𝑡) = 𝜂𝑢,𝑐𝐹

(

𝐶𝑢(𝑡)
)

+ 𝜂𝑢,𝑒𝐺
(

𝐸Total𝑢 (𝑡)
)

𝐺(𝑡) = 𝜙 − 𝜙𝑒−𝜑𝑒
−𝜖𝑡

We refer to the reward function design in Do et al. (2021) as 
‘‘Queue’’. The objective function is defined as a weighted sum of the 
system reliability-of-learning 𝑅𝑠 and the energy consumption 𝐸  at the 
𝑡 𝑡
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Table 1
Optimization objectives comparison between reference using RL method to deal with aircraft problems. Minimize the energy consumption of aircraft flight is the most common 
objective.
 Objective Ours Hong et al. (2021b) Yu et al. (2021) Song et al. (2022) Song et al. (2024) Liu et al. (2023) Zhang and Cao (2022) Guo et al. (2023) 
 Number of objectives 6 1 3 3 2 2 3 2  
 Min energy consumption ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Max energy efficiency ✓ ✓  
 Max sum data rate ✓  
 Max harvested energy ✓  
 Min delayed tasks ✓ ✓  
 Max collected tasks ✓ ✓  
 Max system throughput ✓  
 Max system achievable rate ✓  
 Min time consumption ✓  
 Min noise production ✓  
 Max passenger safety ✓  
 Max passenger comfort ✓  
Table 2
Algorithm comparison between reference dealing with aircraft problems. DDPG algorithm is commonly used to deal with aircraft problems. Dijkstra and RRT algorithm are used 
as baseline to compare with RL algorithms.
 Algorithm Ours Hong et al. 

(2021b)
Yu et al. 
(2021)

Zhang et al. 
(2022)

Song et al. 
(2022)

Song et al. 
(2024)

Liu et al. 
(2023)

Zhang and 
Cao (2022)

Guo et al. 
(2023)

An et al. 
(2023)

 

 

RL

PPO ✓  
 TD3 ✓ ✓  
 DDPG ✓ ✓ ✓ ✓ ✓  
 Particle swarm 

optimization with RL
✓  

 Evolutionary MORL ✓ ✓  
 Envelope MO Q-learning ✓  
 Double/Dueling DQN ✓  
 TD-MPC2 ✓  
 Average TD3 ✓  
 Non-RL Dijkstra ✓  
 RRT ✓  
UAV as follows. A virtual energy queue 𝜓𝑡 for the UAV is introduced. 
𝐸𝑏 is the allowable energy budget of the UAV and 𝑇  is the length of a 
time horizon.

maxE

[ 𝑇
∑

𝑡=1
𝛾 𝑡−1

(

𝑅𝑠𝑡 − 𝛿 𝜓𝑡𝐸𝑡
)

]

𝜓𝑡+1 = max
{

𝜓𝑡 + 𝐸𝑡 −
𝐸𝑏
𝑇
, 0

}

However, these approaches limit the RL agent to explore better 
flight actions with lower energy consumption. We propose a new 
reward function design architecture and demonstrate its advantages 
over the two common approaches, ‘Direct’ and ’Efficiency,’ as well as 
the other two approaches, ‘Math’ and ’Queue,’ through comparative ex-
periments. We use DDPG algorithm as a major part of our experiments 
because DDPG is commonly used in related works as shown in Table  2. 
The experiment details are explained in Section 4.

3. Methodology

Our work pipeline is shown in Fig.  2. We begin by explaining 
our problem formulation and learning techniques, followed by the 
introduction of simulation data source and details.

3.1. Multi-objective eVTOL aircraft motion planning

We formulate our problem with six objectives categorized into three 
perspectives: passenger concerns, eVTOL aircraft concerns and environ-
ment concern over a task period. Fig.  3 shows the interdependencies 
highlighting the complexity of eVTOL flight motion planning to con-
sider energy, noise impact, and passenger concerns. Passenger concerns 
include: ¶ maximization of safety, · minimization of traveled time, 
¸ maximization of comfort. eVTOL concern includes: ¹ minimization 
of energy consumption, º maximization of energy efficiency. Environ-
ment concern includes: » minimization of noise produced by eVTOL. 
4 
We explain the definition and calculation method of the objectives in 
the observation space part.

We formulate our task as a Partially Observable Markov Decision 
Process (POMDP) represented by a tuple (, ,  , , 𝛾, 𝑇 , 𝛺, ) where: 
 is the state space;  is the action space; (𝑠′|𝑠, 𝑎) is the transition 
probability function;  is the reward function; 𝛾 ∈ (0, 1] is the discount 
factor; 𝑇  is the episode length (horizon); 𝛺 is the observation space; 
and  is the probability distribution of retrieving an observation 𝜔 ∈ 𝛺
from a state 𝑠 ∈ . At each timestep 𝑡 ∈ [1, 𝑇 ], an eVTOL uses its policy 
𝜋𝜃(𝑎𝑡|𝑜𝑡) to take an action 𝑎𝑡 ∈ , given the observation 𝑜𝑡 ∈ . Next, 
the environment provides feedback on action 𝑎𝑡 by calculating a reward 
𝑟𝑡 and transitioning the agent into the next state 𝑠𝑡+1. The eVTOL’s goal 
is to learn a policy 𝜋𝜃 that maximizes the discounted sum of rewards, 
i.e., return, 𝑅𝑡 =

∑𝑇
𝑖=𝑡 𝛾

𝑖−𝑡𝑟𝑖.

3.1.1. Action space
The action space consists of continuous actions ∈ [−1, 1] along the 

X-, Y-, 𝑍-axis, respectively. When 𝑎𝑥 > 0, the eVTOL advances in the 
positive X-direction; if 𝑎𝑥 = 0, the aircraft remains stationary along the 
𝑋-axis; if 𝑎𝑥 < 0, the aircraft moves towards the negative X-direction. 
The same goes for Y- and 𝑍-axis.

𝐴 = {(𝑎𝑥, 𝑎𝑦, 𝑎𝑧)}, 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 ∈ [−1, 1].

The agent determines the eVTOL’s velocity by multiplying the actions 
by the maximum velocity 𝑉𝑚𝑎𝑥, 𝑣𝑥 = 𝑎𝑥 ∗ 𝑉𝑚𝑎𝑥. We set the maximum 
velocity to be 60 m∕s. The agent acquires the state and executes the 
action every second, 𝑇𝑠𝑡𝑒𝑝 = 1 𝑠. Upon executing an action, the aircraft 
transitions from one 3D coordinate to another.

𝑉 = {(𝑣𝑥, 𝑣𝑦, 𝑣𝑧)}, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 ∈ [−𝑉𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥].
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Fig. 2. Overview of the RL framework for eVTOL flight motion planning in urban environment. The framework addresses multi-perspective objectives from passengers, eVTOL 
aircraft, and the environment, focusing on safety, time-saving, comfort, energy-saving, and noise impact. The RL agent interacts with the urban environment, storing actions, updating 
policies, and retrieving states to maximize rewards and minimize penalties. The design incorporates a DRL training process with actor-critic methods, optimizing the policy through 
sampled information and loss minimization. The proposed reward function design includes termination conditions (out of bounds, energy depletion) and non-termination penalties 
(energy, time, obstacle penalties) along with target rewards.
Fig. 3. Interrelated factors of eVTOL flight with passenger concerns in urban wind fields. Plus and minus signs indicate factors that increase or decrease the respective factor. 
Red-bordered boxes indicate the factors we focus on this study. Key passenger concerns include safety, comfort, and flight time. Aircraft weight factors – fuselage, payload, and 
battery – directly affect energy cost and flight dynamics. The wind field can have both positive and negative impacts on energy cost. Flight speed and distance influence both 
energy cost and noise, where higher flight speeds reduce flight time but increase noise, and longer distances raise energy consumption.
Fig. 4. eVTOL aircraft power consumption versus horizontal airspeed 𝑉𝑎𝑖𝑟.

3.1.2. Observation space
To enable an RL policy to generalize across a variety of scenarios, 

we transform the conditions each eVTOL observes into a fixed-length 
representation, which includes the following.

• Position info: We use 𝑝𝑡 to represent the 3D coordinates of aircraft. 
We further define 𝑑𝑒𝑠 as the position of the flight destination 
and 𝑑𝑒𝑡 as the distance to the nearest building or environment 
5 
Table 3
Modified value of parameters in the power model.
 Parameter Value  
 𝑘1 0.8554  
 𝑘2 2.774  
 𝑐2 10.1664 
 𝑐3 0  
 𝑐4 0.444  
 𝑐5 0.6696  
 𝑐6 0  
 𝑚 305 kg  

boundary in six directions: front, back, left, right, up, down:

𝑑𝑒𝑡 = {𝑑front, 𝑑back, 𝑑left, 𝑑right, 𝑑up, 𝑑down}.

• Wind field: The wind vector is defined as:

𝑊 = (𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤),

where (𝑥, 𝑦, 𝑧) represents a point in the simulation area and 
(𝑢, 𝑣,𝑤) represents the wind velocity at (𝑥, 𝑦, 𝑧).
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Fig. 5. Noise emission, propagation, and receiver framework for eVTOL flight in urban environment. In the emission stage, noise generated by the eVTOL source is modeled using 
existing empirical method. During propagation, noise travels through the air according to the ISO9613-2 international standard, which details the attenuation of sound during 
outdoor propagation. We note that we do not consider the effects of local wind, atmospheric conditions, and reflections due to reflective structures (e.g., buildings) on sound 
propagation. In the receiver stage, the noise level at various points in the urban environment is measured using a microphone array arranged around buildings.
Fig. 6. The locations of chosen POIs. The nine POIs are placed dispersedly on the top of buildings, to cover the majority area of urban environment.
• Passenger concerns: For passenger concerns with respect to a new 
transportation option, the most important factor is safety, fol-
lowed by reliability, time savings, convenience and comfort (Ed-
wards and Price, 2020). We choose the safety, time saving and 
comfort as the three objectives as passenger concerns.

– Safety: First, if the acceleration exceeds the set safety thresh-
old, a negative reward is applied to reduce the impact of the 
acceleration change on ascent safety and comfort. Second, 
conflict detection and avoidance is considered as one part of 
passenger perceptions of safety (Edwards and Price, 2020). 
If the distance between eVTOL and the building in any 
direction is below the safety threshold, a negative reward is 
applied. Third, if the wind speed exceeds the set maximum 
safe wind speed threshold, a negative reward is applied to 
ensure that eVTOL can remain stable in high wind speeds.

– Time saving: The objective is to minimize the flight time 
consumption from origin to destination.

– Comfort: First, we use longitudinal acceleration (xy axis) 
< 0.4–0.6 𝑔, vertical acceleration < 0.1 𝑔 to measure the 
comfort factor 𝐶. Every 0.02/3 = 0.007 𝑔 increases by 10% 
6 
uncomforty. Second, interior noise for UAM cabins could 
become an issue for passenger comfort (Rizzi et al., 2020), 
so we also consider the source noise produced by the eVTOL 
aircraft as one part of the passenger comfort.

• eVTOL concern: We calculate the energy consumption 𝐸𝑡 at 
timestep 𝑡 of eVTOL flying with air resistance by following Liu 
et al. (2017) proposed power 𝑃  model:
𝐸𝑡 = 𝑃 ∗ 𝑇𝑠𝑡𝑒𝑝

𝑃 = 𝑃𝑖(𝐹𝑇 , 𝑉𝑣𝑒𝑟𝑡) + 𝑃𝑝(𝐹𝑇 , 𝑉𝑎𝑖𝑟) + 𝑃𝑝𝑎𝑟(𝑉𝑎𝑖𝑟)

𝑃𝑖(𝐹𝑇 , 𝑉𝑣𝑒𝑟𝑡) = 𝑘1𝑇
⎡

⎢

⎢

⎣

𝑉𝑣𝑒𝑟𝑡
2

+

√

√

√

√
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𝑉𝑣𝑒𝑟𝑡
2

)2
+
𝐹𝑇
𝑘22

⎤

⎥

⎥

⎦

𝑃𝑝(𝐹𝑇 , 𝑉𝑎𝑖𝑟) = 𝑐2𝐹
3∕2
𝑇 + 𝑐3(𝑉𝑎𝑖𝑟 cos 𝛼)2𝐹

1∕2
𝑇

𝑃𝑝𝑎𝑟(𝑉𝑎𝑖𝑟) = 𝑐4𝑉
3
𝑎𝑖𝑟

𝐹𝑇 =
√

(𝑚𝑔 − (𝑐5(𝑉𝑎𝑖𝑟 cos 𝛼)2 + 𝑐6𝐹𝑇 ))2 + (𝑐4𝑉 2
𝑎𝑖𝑟)2

𝑉 = ‖𝐕 ‖ = ‖𝐕 − 𝐕 ‖
𝑎𝑖𝑟 𝑎𝑖𝑟 𝑔𝑟𝑜𝑢𝑛𝑑 𝑤𝑖𝑛𝑑



S. Liu et al. Engineering Applications of Artiϧcial Intelligence 149 (2025) 110392 
where 𝑃𝑖, 𝑃𝑝, 𝑃𝑝𝑎𝑟 are the induced power, profile power and par-
asite power, respectively. 𝐹𝑇  is the thrust, 𝑚 is the total take-
off mass of the eVTOL aircraft, 𝑔 is the gravity acceleration 
(i.e., 9.8 m∕s2), 𝛼 is the angle of attack. 𝑉𝑣𝑒𝑟𝑡 is the vertical 
speed, 𝑉𝑎𝑖𝑟 is the horizontal airspeed, 𝐕𝑎𝑖𝑟, 𝐕𝑔𝑟𝑜𝑢𝑛𝑑 , 𝐕𝑤𝑖𝑛𝑑 are 
the horizontal air velocity, ground velocity, and wind velocity, 
respectively. 𝑘1, 𝑘2, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6 are dimensionless parameters to 
be identified.
We note that Liu et al. (2017) identifies the parameters of the 
power model by flying a small drone, we do not directly use the 
value of these identified parameters from Liu et al. (2017) be-
cause our envisioned application scenario requires a much larger 
aircraft capable of taking passenger, rather than small package. 
We follow the analytical expression of the parameters in Liu et al. 
(2017) and modify the value based on eVTOL aircraft related 
work (Pradeep and Wei, 2018). The modified value of parameters 
are shown in Table  3. Fig.  4 shows the power curve calculated by 
modified parameters.

• Environment concern: As discussed in Section 1, noise production 
of UAM needs to be considered. We consider the noise produced 
by eVTOL aircraft and received by buildings as the environment 
concern. Fig.  5 shows the noise calculation process. The equiv-
alent continuous downwind octave-band sound pressure level 
at a receiver location 𝐿𝑓𝑇 (𝐷𝑊 ) (International Organization for 
Standardization, 1996) is defined as:
𝐿𝑓𝑇 (𝐷𝑊 ) = 𝐿𝑤 +𝐷𝑐 − 𝐴

where 𝐿𝑤 is the octave-band sound power level (SPL), in decibels, 
produced by the point sound source relative to a reference sound 
power of one picowatt; For an omnidirectional point sound source 
radiating into free space, 𝐷𝑐 = 0 dB; 𝐴 is the octave-band 
attenuation, in decibels, that occurs during propagation from the 
point sound source to the receiver.

– Emission 𝐿𝑤: The SPL produced by eVTOL aircraft flight is 
defined as Schmähl et al. (2021):

𝐿𝑤 = 10 ⋅ log10

(

10
(
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𝐿𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 (𝑝) = 𝑝6
where 𝜙, 𝜗 is the azimuth and polar angle between POI and 
eVTOL aircraft, 𝑃𝑒𝑙 is the eVTOL power consumption, and 
𝑝 is the model input parameter vector, detailed in Schmähl 
et al. (2021).
We note that we set 𝐿𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 to be zero because the prop-
agation loss is already included in attenuation 𝐴. Since
Schmähl et al. (2021) does not give a detailed calculation 
method for 𝑃𝑒𝑙, we set 𝑃𝑒𝑙 = 𝑃

5 , to match the noise level 
produced by manned aircraft in real life.

– Attenuation 𝐴: We only consider the geometrical divergence 
𝐴𝑑𝑖𝑣, accounts for spherical spreading in the free field from 
a point sound source, making the attenuation.
𝐴 = 𝐴𝑑𝑖𝑣 + 𝐴𝑜𝑡ℎ𝑒𝑟𝑠

𝐴𝑑𝑖𝑣 = [20𝑙𝑔(𝑑∕𝑑0) + 11]𝑑𝐵

where 𝑑 is the distance from the source to receiver, in 
meters, 𝑑  is the reference distance (= 1 𝑚).
0
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– Receiver: Fig.  6 shows the nine point of interest (POI) on 
the top of buildings to measure the eVTOL flight’s effect 
on urban environment. Each POI receives same background 
noise 𝐿𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 for simplicity and evaluation of eVTOL 
flight noise.

Overall, the observation space of an eVTOL at 𝑡 is:
𝑜𝑡 = ⟨𝑝𝑡⟩⊕ ⟨𝑑𝑒𝑠⟩⊕ ⟨𝑑𝑒𝑡⟩⊕ ⟨𝑊 ⟩⊕ ⟨𝐸𝑡⟩⊕ ⟨𝑆⟩⊕ ⟨𝐶⟩⊕ ⟨𝐿𝑓𝑇 ⟩.

3.1.3. Reward function
Our reward function consists of non-terminating reward 𝑟𝑁𝑇  (for 

intermediate steps) and terminating reward 𝑟𝑇  (for the terminate step).
𝑟𝑁𝑇  is designed to optimize multiple objectives, including energy 

consumption, time consumption, noise impact, and passenger comfort 
and safety.
𝑟𝑁𝑇 = 𝑅𝑒 + 𝛼1𝑇𝑠𝑡𝑒𝑝 + 𝛼2𝑅𝑑𝑒𝑠𝑡 + 𝛼3𝐿𝑓𝑇 + 𝛼4𝑆 + 𝛼5𝐶,

where each term is defined as:

• 𝑅𝑒: rewards eVTOL for minimizing energy consumption, as de-
scribed in the subsequent section.

• 𝑇𝑠𝑡𝑒𝑝: penalizes the time taken per step. It rewards faster progress 
towards the destination, thus minimizing the time cost for pas-
sengers.

• 𝑅𝑑𝑒𝑠𝑡: rewards eVTOL moving towards the destination. The re-
ward is a fixed positive value if the difference in distance to the 
target between steps is greater than 0, and negative if it is less 
than 0. This encourages the eVTOL to consistently move closer to 
the destination.

• 𝐿𝑓𝑇 : penalizes eVTOL for generating noise, aiming to minimize 
the environmental impact. The noise impact is calculated by 
measuring the noise levels received at the uniformly distributed 
receivers placed in the urban environment. At each step, the 
average noise level from the receivers is computed, and a penalty 
is applied based on this average. Lower average noise levels result 
in higher rewards, encouraging quieter flight.

• 𝑆: penalizes eVTOL unsafe maneuvers to ensure passenger safety. 
If the distance to the nearest obstacle below eVTOL is below a 
safety threshold, a penalty is applied. The penalty is proportional 
to how much the distance is below the threshold, encouraging 
eVTOL to maintain a safe distance from obstacles.

• 𝐶: penalizes eVTOL excessive accelerations and noise that could 
cause discomfort. It ensures that the flight is smooth and com-
fortable for passengers by rewarding minimal accelerations and 
lower noise levels.

We terminate training when the eVTOL is ¶ out-of-bounds (exit-
ing simulation), · depleting energy, ¸ exceeding a predefined time 
limit, or ¹ successfully reaching the destination. For case ¹, we set 
𝑟𝑇 = 1000, and for all other cases, 𝑟𝑇 = −1000. We determine the 
weight settings through multiple experiments, gradually identifying the 
appropriate values for 𝛼1, 𝛼2, . . . , 𝛼5 by exploring various weight 
combinations and observing their impact on multi-objective optimiza-
tion, including energy consumption, time, noise, safety, and passenger 
comfort. In multi-objective problems, each objective’s importance must 
be reflected through careful trade-offs; for this reason, 𝛼1 and 𝛼2, 
associated with energy consumption and time efficiency, are assigned 
relatively higher values, while 𝛼3, relating to noise levels, is chosen 
to minimize environmental impacts within mission constraints, and 𝛼4 
and 𝛼5, corresponding to safety and passenger comfort, are similarly 
prioritized to enhance overall travel experience. These weights are 
selected based on iterative convergence of performance metrics and 
specific application requirements, resulting in a balanced configuration 
that effectively addresses all targeted objectives.

To ensure the RL agent not only reaches the destination successfully 
but also continually optimizes the flight path to minimize energy or 
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time costs, we pursue reward shaping: an additional reward adjustment 
is introduced at the end of each successful episode. If the agent’s 
energy or time cost in a successful episode is lower than the historical 
best, it earns additional rewards proportional to the cost difference. 
Conversely, if the cost exceeds the previous best, a penalty proportional 
to the excess cost is deducted. This setup encourages agents to con-
tinually seek more efficient flight paths. This reward mechanism does 
not apply to the first episode that successfully reaches the destination 
as there is no historical optimal value for comparison at that time. 
This dynamic reward adjustment effectively puts the focus of RL on 
continuous performance improvement rather than just completing the 
task itself.

3.1.4. Energy consumption reward function 𝑅𝑒
𝑅𝑒 includes several components to ensure the eVTOL aircraft mini-

mizes its energy consumption, the values of 𝛼1, . . . , 𝛼10 are detailed in 
the provided code repository.
𝑅𝑒 = 𝛼6𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 + 𝛼7𝑅𝑛𝑎𝑖𝑣𝑒 + 𝛼8𝑅𝑏𝑒𝑠𝑡 + 𝛼9𝑅𝑑𝑖𝑓𝑓 + 𝛼10𝑅𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 ,

where each term is defined as:

• 𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦: rewards eVTOL to maximize the energy efficiency. 
Instead of simply rewarding the distance covered in each step, 
we define the energy efficiency as the difference in the portion 
of the total distance, 𝐷𝑡𝑜𝑡𝑎𝑙, to the destination traveled between 
the current and previous step, 𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑑𝑛𝑒𝑥𝑡. This difference is 
then divided by the energy consumed during that step, 𝐸𝑡. Thus, 
the reward function rewards eVTOL to achieve greater efficiency 
by getting more closer to destination with less energy, promoting 
optimal energy usage throughout the flight.

𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =

𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝐷𝑡𝑜𝑡𝑎𝑙

− 𝑑𝑛𝑒𝑥𝑡
𝐷𝑡𝑜𝑡𝑎𝑙

𝐸𝑡
• 𝑅𝑛𝑎𝑖𝑣𝑒: penalizes eVTOL every step according to the energy con-
sumed.

𝑅𝑛𝑎𝑖𝑣𝑒 = 𝐸𝑡

• 𝑅𝑏𝑒𝑠𝑡: penalizes eVTOL every step if the current episode’s energy 
consumption exceeds the historically best energy consumption 
recorded.

• 𝑅𝑑𝑖𝑓𝑓 (Terminating Reward): penalizes eVTOL if the episode’s 
total energy consumption exceeds the historically best energy 
consumption.

• 𝑅𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙(Terminating Reward): rewards eVTOL maintaining the 
same energy level at the end of the episode as when it started, 
promoting overall energy efficiency.

3.1.5. RL algorithm
We use PPO (Schulman et al., 2017) to learn the optimal policy. The 

original PPO paper provided limited implementation details beyond 
the use of Generalized Advantage Estimation (GAE) for the advantage 
function calculation. The details of neural network architecture or ac-
tivation function are left unspecified, allowing for customization based 
on the problem at hand. However, as Engstrom et al. (2020) suggest, 
even superficial or seemingly trivial changes in optimization methods 
or algorithmic tweaks can significantly impact PPO’s performance. Our 
modification thus considers various factors: we use the tanh activation 
function; include LayerNorm, BatchNorm, and Dropout layers in both 
actor and critic networks; and adopt linearly decay learning rate. 
We further normalize the reward to mitigate impacts on the value 
function training caused by excessively large or small rewards. We 
record the standard deviation of a rolling discounted sum of rewards, 
𝜎 = 𝑠𝑡𝑑(

∑𝑇
𝑖=𝑡 𝛾

𝑖−𝑡𝑟𝑖), and normalize the current reward as 𝑟𝑡∕𝜎. Table  4 
shows the hyperparameters we use in experiment.

Further, we use original TD3 and DDPG to study the performance 
of our method under different RL algorithms. We also implement two 
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Table 4
Hyperparameters for PPO.
 Parameter Value  
 Batch size 65 536 
 Mini batch size 512  
 Hidden width 64  
 Actor learning rate 3e−4  
 Critic learning rate 3e−4  
 Gamma 0.99  
 Lamda 0.95  
 Epsilon 0.2  
 K epochs 10  
 Entropy coefficient 0.1  

more recent RL algorithms as model-based TD-MPC2 and model-free 
Average TD3. This allows us to examine the effectiveness of our design 
cross state-of-the-art model-based and model-free RL algorithms. We 
demonstrate the robustness of our method by conducting comparison 
experiments in Section 4.

3.2. Simulation data sources

The wind field simulation data we use in this paper comes from 
our own CFD simulation. We use an OpenStreetMap (OSM) model of 
city Atlanta, state GA, USA to simulate our city-scale wind field data. 
The simulated data details are a set of wind vectors 𝑊 , where (𝑥, 𝑦, 𝑧)
represents a point in the simulation area and (𝑢, 𝑣,𝑤) represents the 
wind velocity at (𝑥, 𝑦, 𝑧).
𝑊 = (𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤)

To simulate high-fidelity, city-scale wind fields (see Fig.  7), we use 
Reynolds-averaged incompressible Navier–Stokes equations (RANS)
(Alfonsi, 2009) to simulate steady-state wind fields. The RANS simula-
tions are carried out with an open-source finite-volume method (FVM) 
code of OpenFOAM (Weller et al., 1998). The RANS equations are 
defined in Eqs.  (1) and (2). 
∇ ⋅ 𝐮 = 0, (1)

𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅ ∇𝐮 = −1
𝜌
∇𝑃 + ∇ ⋅ (𝜈∇𝐮) − ∇ ⋅ 𝝉 , (2)

where 𝐮 = (𝑢, 𝑣,𝑤) is mean flow velocity, 𝑡 is time, 𝑃  is pressure, 
𝜌 is density, 𝜈 is kinematic viscosity. 𝝉 is the Reynolds stress tensor 
and is approximated by the RANS turbulence models. The standard 
𝑘 − 𝜖 turbulence model is used along with the wall function approach. 
Such a combination provides a balance between performance and com-
putational efficiency (Li and Sansalone, 2021). Detailed mathematical 
expressions of the 𝑘 − 𝜖 turbulence model can be found in previous 
studies (Launder and Spalding, 1974).

In this project, we consider five wind speed [4, 8, 12, 16, 20] m∕s and 
for each speed we consider four wind directions [0◦, 90◦, 180◦, 270◦]. 
Depending on the wind direction, the Dirichlet boundary condition of 
wind speed is applied to the corresponding upstream domain boundary 
surface, and the Neumann boundary conditions are applied to the 
downstream boundary surface. No slip boundary conditions are applied 
to all building surfaces and ground. The free-shear boundary condi-
tions are applied to the top boundary domain and two-side boundary 
surfaces. A 5% turbulence intensity is considered in the upstream 
boundary. The exact boundary conditions for turbulence quantities 
(i.e., 𝑘, 𝜖) are less of a concern in this study because the flow solutions 
are dominated by the turbulent wakes generated by the buildings.

A Semi-Implicit Method for Pressure Linked Equations (SIMPLE) 
algorithm is used to solve the system of equations, i.e., Eqs.  (1) and 
(2). A second-order upwind scheme is used for the advection terms 
in the mean flow and turbulence equations. For the diffusion terms 
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Fig. 7. City-scale wind field simulation. The left figure shows the OpenStreetMap (OSM) model of city Atlanta, state GA, USA. The simulation environment is imported into 
OpenFOAM (Anon, 2020a) via scripting. This allows for the visualization of the environment in Paraview (Anon, 2020b). In the right figure, one part of the result of wind field 
simulation is visualized as volumetric rendering of velocity field magnitude.
in the mean flow and turbulence equations, the second-order central-
difference schemes are used. The simulations are considered as con-
verged when the area-averaged turbulent kinetic energy (TKE) at the 
free-shear surface becomes asymptotic (i.e., relative difference < 0.1%), 
and the scaled residuals of all variables are below 10−5.

4. Experiments and results

In this section, we first introduce our training strategies, and explain 
our experiment set-up. Following this, we present the overall results. 
Last, we present the result of our ablation study on reward function.

4.1. Evtol training strategies

We train four distinct training strategies. The first strategy pri-
oritizes minimizing energy consumption, the second concentrates on 
improving passenger experience, and the third concentrates on reduc-
ing environmental impact, and the last aims to strike a balance between 
objectives.

4.1.1. Aircraft energy consumption
As mentioned in Section 2.3, we compare the performance of our 

reward function design with the two common reward function designs 
to minimize the energy consumption of RL agent: ‘‘Direct energy con-
sumption’’ and ‘‘Energy efficiency’’, and the other two reward function 
design ‘‘Math equation’’ and ‘‘Virtual energy queue’’. The experiment 
design for energy consumption consists of ten parts, utilizing five 
RL algorithms: DDPG, TD3, PPO, Average TD3 and TD-MPC2. Each 
part focuses on comparing our reward function design with common 
approaches found in other research papers. The comparisons are con-
ducted under the same RL algorithm and identical environment setup, 
with only the reward function design for energy consumption being 
modified.

• DDPG with Direct Reward Design Comparison: We use the DDPG 
algorithm to compare our reward function design against the 
direct reward function commonly used in other research.

• DDPG with Efficiency Reward Design Comparison: We use the 
DDPG algorithm but compares our reward function design against 
another common approach focusing on energy efficiency.

• PPO with Direct Reward Design Comparison: We employ the PPO 
algorithm to compare our reward function design with the direct 
reward function.

• TD3 with Efficiency Reward Design Comparison: We use the 
TD3 algorithm to compare our reward function design with the 
efficiency reward function.
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• DDPG with Math Reward Design Comparison: We use the DDPG 
algorithm to compare our reward function design against the 
math equation reward function design.

• DDPG with Queue Reward Design Comparison: We use the DDPG 
algorithm to compare our reward function design against the 
virtual energy queue reward function design.

• TD-MPC2 with Direct Reward Design Comparison: We use the 
model-based TD-MPC2 algorithm to compare our reward function 
design against the direct reward function design.

• TD-MPC2 with Efficiency Reward Design Comparison: We use the 
model-based TD-MPC2 algorithm to compare our reward function 
design against the efficiency reward function design.

• Average TD3 with Direct Reward Design Comparison: We use the 
Average TD3 algorithm to compare our reward function design 
against the direct reward function design.

• Average TD3 with Efficiency Reward Design Comparison: We 
use the Average TD3 algorithm to compare our reward function 
design against the efficiency reward function design.

4.1.2. Passenger, environment concerns and all objectives
The second training strategy aims to increase the passenger safety, 

comfort, and to reduce the time during eVTOL flight. The third training 
strategy aims to reduce the noise generated by the eVTOL and received 
by the receivers in the urban environment. The last training strategy 
aims to optimize all the objectives involved in this study simultane-
ously: energy consumption, passenger safety, passenger comfort, time 
consumption and noise impact. 

4.2. Experiment set-up

We set the OSM model of city Atlanta, state GA, USA to be our 
simulation environment. The origin and the destination of eVTOL are 
cross the city, 10 kilometers apart.

We report results about seven wind fields, namely D0-4, D0-8, D90-
4, D180-4, D180-12, D270-16, D270-20. The wind field’s name consists 
of wind direction and speed, for example, D90-4 means that the angle 
between the wind direction and the positive 𝑋-axis is 90◦ and the wind 
speed is 4 m∕s.

4.3. Computational complexity analysis

For one set of training, we utilize two NVIDIA RTX 2080Ti GPU to 
handle up to 10 million training steps over a period of approximately 
24 h. Under these conditions, the system achieved roughly 2000 steps 
per second (SPS). For deployment stage in the future, the computa-
tional complexity will be reduced. Inference requires only a forward 
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Fig. 8. Training performance comparisons. LEFT: Our method starts to outperform vanilla PPO (Schulman et al., 2017) starting around the 6000𝑡ℎ episode. RIGHT: Our approach 
allows the eVTOL to reach its destination far earlier than vanilla PPO. These results demonstrate the effectiveness of our algorithm design.
pass through the trained neural network, and we plan to optimize 
the network architecture to run efficiently on low-power embedded 
devices at real-time speeds. As a result, the computational overhead at 
deployment is kept manageable, ensuring that the eVTOL control policy 
can be executed with low latency and without excessive computational 
demands.

4.4. Evaluation metric and results

In our RL training framework, we emphasize retaining the policy 
that demonstrates the best performance across critical metrics. Our 
evaluation involves comparing the extremum values of energy con-
sumption, energy efficiency, noise levels, and passenger comfort against 
other designs. Unlike other methods that often focus on single-objective 
optimization, such as minimizing energy consumption or flight time, 
our approach distinguishes itself through a novel reward function 
design tailored for multi-objective optimization in eVTOL flight mo-
tion planning. This reward function incorporates broader objectives, 
including passenger safety, noise mitigation, and comfort, ensuring a 
balanced solution that addresses the social and environmental impacts 
of eVTOL operations. To provide a robust comparison, we conducted 
experiments using both model-based and model-free RL algorithms. 
While the RL training frameworks are consistent across methods, the 
primary distinction lies in our reward function’s ability to generalize 
effectively across algorithms. Experimental results demonstrated that 
our method consistently outperformed others shown in the following 
sections. Possible disadvantages could involve additional complexity, 
leading to longer training times and requiring careful tuning of reward 
coefficients to balance competing objectives effectively. This integrated 
strategy highlights the effectiveness and practicality of our reward 
function design for advancing eVTOL flight motion planning in complex 
urban environments.

We first demonstrate the effectiveness of our modification on PPO 
algorithm as shown in Fig.  8 LEFT: we can see that our approach 
majorly outperforms PPO starting around the 6000𝑡ℎ episode. Fig.  8 
RIGHT shows our method can approach the destination around the 
7000𝑡ℎ episode, while PPO still has around 30% distance left to the 
destination around the 12000𝑡ℎ episode.

4.4.1. Aircraft energy consumption
We compare our method with four existing approaches, demonstrat-

ing its superiority in reducing eVTOL flight energy consumption and 
enhancing energy efficiency as shown in Fig.  9. In subfigures (a) and 
(b), using the DDPG algorithm in the D0-8 wind field, our method 
can achieve lower energy consumption and higher energy efficiency, 
around episode 15000 𝑡ℎ, than the direct, efficiency, math and queue 
methods. Subfigures (c) and (d) show that with the modified PPO 
algorithm in the D0-4 wind field, our method again excels, achieving 
the optimal policy around episode 14000 𝑡ℎ. Subfigures (e) and (f) 
illustrate the TD3 algorithm’s results in the D0-4 wind field, where 
our method continues to lead, with the optimal policy learned around 
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episode 7000 𝑡ℎ. Subfigures (g) and (h) display the TD-MPC2 algo-
rithm’s results in D270-16 wind field, comparing our method with 
the Direct and Efficiency method. Subfigures (i) and (j) display the 
Average TD3 algorithm’s results in D270-20 wind field, comparing 
our method with the Direct and Efficiency method. For quantitative 
results, Table  5 shows the comparison of energy consumption and 
energy efficiency. Our method demonstrates overall advantage in both 
reducing energy consumption and enhancing energy efficiency, despite 
a few instances where it shows less advantage. In the DDPG algorithm 
with the D0-8 wind field, our method reduces energy consumption 
by 375.1% compared to the Direct method and by 25.1% compared 
to the Efficiency method, while also increasing energy efficiency by 
75.22% and 17.58% respectively. Although there are cases like the 
TD-MPC2 algorithm with the D270-16 wind field, where our method 
shows a slight increase in energy consumption compared to the Direct 
method, the overall trend across various scenarios consistently favors 
our approach. On average, our method reduces energy consumption 
by 56.99% compared to the Direct method, by 31.56% compared to 
the Efficiency method, by 99.33% compared to the Math method and 
by 147.9% compared to the Queue method, highlighting its strong 
performance in minimizing energy usage. Also, our method improves 
energy efficiency by 15.66% compared to the Direct method and by 
10.82% compared to the Efficiency method, by 36% compared to the 
Math method and by 42.5% compared to the Queue method, indicating 
that it not only saves energy but also improves the distance traveled per 
unit of energy consumed.

4.4.2. Passenger concerns
Fig.  10 shows the comparison of three passenger concerns between 

our modified PPO, DDPG, TD-MPC2 and Average TD3 algorithm. Fig. 
10 shows that our method can learn better flight motions during RL 
training, and has an advantage in terms of passenger comfort, passenger 
safety and time consumption compared to DDPG. For our modified PPO 
algorithm, the comfort level steadily improves, reaching a value close 
to −200 around episode 8000 𝑡ℎ. Although the DDPG algorithm can 
also learn better policy in the beginning, the performance decreases as 
training continues. Also, our modified PPO can achieve high passenger 
comfort comparable to the performance of recent model-based and 
model-free RL algorithms, TD-MPC2 and Average TD3.

4.4.3. Noise impact on urban environment
We record the average step noise as evaluation metric. For each 

successful episode, every step generates a noise value received by the 
nine POIs shown in Fig.  6. The sum of all noise values across all steps 
is divided by the total number of steps in the episode, yielding the 
average step noise. Fig.  11 shows the comparison of average step noise 
produced by eVTOL flight between our modified PPO, DDPG, TD-MPC2 
and Average TD3 algorithm. Our modified PPO algorithm achieves 
lower noise level produced by eVTOL flight compared to DDPG and 
TD-MPC2 algorithm. Also, our performance is comparable to the recent 
model-free RL algorithm, Average TD3.



S. Liu et al. Engineering Applications of Artiϧcial Intelligence 149 (2025) 110392 
Table 5
Comparison of energy consumption and energy efficiency across five different RL algorithms and six wind fields. The first and second column lists the algorithms and corresponding 
wind fields. The table is divided into two main sections: energy consumption and energy efficiency. For each algorithm and wind field combination, we compare the performance 
of our method with four other methods: ‘‘Direct’’ and ‘‘Efficiency’’, ‘‘Math’’ and ‘‘Queue’’. The last row of the table shows the average percentage difference across all conditions 
for energy consumption and energy efficiency.
 RL algorithm Wind Energy consumption (kWh) Energy efficiency (m/kWh)
 Field Ours Direct Efficiency Math Queue Ours Direct Efficiency Math Queue  
 

DDPG

D0–8 49.71 236.2 62.2 177.51 123.34 231.37 57.29 190.69 73.69 99.5  
 D90–4 99.4 52.36 435.29 118.48 78.48 146.16 240.76 33.8 108.52 182.69 
 D180–12 149.34 406.95 103.75 424.07 370.88 81.51 37.19 112.0 34.36 37.23  
 D270–16 98.36 131.77 112.55 144.59 234.52 126.71 93.1 105.54 87.26 55.03  
 D270–20 154.92 129.06 332.08 138.41 659.2 89.77 99.10 42.11 93.28 27.43  
 Modified PPO D0–4 82.65 97.47 N/A N/A N/A 149.47 129.1 N/A N/A N/A  
 TD3 D0–4 52.08 N/A 56.29 N/A N/A 251.0 N/A 230.69 N/A N/A  
 D180–12 69.81 N/A 73.11 N/A N/A 192.86 N/A 178.81 N/A N/A  
 

TD-MPC2

D0–8 57.44 87.72 58.75 N/A N/A 203.84 143.61 198.9 N/A N/A  
 D90–4 60.15 62.47 60.94 N/A N/A 197.0 189.51 198.48 N/A N/A  
 D180–12 95.88 112.45 111.07 N/A N/A 130.61 115.83 114.46 N/A N/A  
 D270–16 69.04 86.22 83.44 N/A N/A 173.09 144.07 147.99 N/A N/A  
 D270–20 99.67 89.95 100.51 N/A N/A 124.77 136.37 117.78 N/A N/A  
 

Average TD3

D0–8 48.15 161.8 48.91 N/A N/A 270.78 90.55 266.08 N/A N/A  
 D90–4 53.62 58.13 54.36 N/A N/A 243.67 224.69 241.14 N/A N/A  
 D180–12 74.86 67.83 73.12 N/A N/A 183.72 192.55 179.30 N/A N/A  
 D270–16 75.93 63.88 74.21 N/A N/A 194.20 205.26 200.16 N/A N/A  
 D270–20 76.59 128.91 94.03 N/A N/A 174.23 104.45 164.72 N/A N/A  
 Average diff (%) 56.99 31.56 99.33 147.9 15.66 10.82 36 42.5  
Fig. 9. Comparison of energy consumption and energy efficiency between our method and the two other common methods. The scattered data points are shown alongside smoothed 
curves to highlight trends across RL training episodes. (a, c, e, g, i, k) illustrate flight energy consumption in kWh, and (b, d, f, h, j, l) depict energy efficiency in meters∕kWh. 
The rows represent different algorithms and comparison scenarios: (a, b) show results from DDPG algorithm in D0-8 wind field, comparing our method with the Direct, Efficiency, 
Math and Queue methods; (c, d) present results from our modified PPO algorithm in D0-4 wind field, comparing our method with the Direct method; and (e, f) display the TD3 
algorithm’s results in D0-4 wind field, comparing our method with the Efficiency method; (g,h) display the TD-MPC2 algorithm’s results in D270-16 wind field, comparing our 
method with the Direct and Efficiency method; (i,j) display the Average TD3 algorithm’s results in D270-20 wind field, comparing our method with the Direct and Efficiency 
method. (k,l) display the Average TD3 algorithm’s results in D90-4 wind field, comparing our method with the Direct and Efficiency method.
11 
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Fig. 10. Comparison of three passenger concerns between our modified PPO, DDPG, TD-MPC2 and Average TD3 algorithm. LEFT: The subplot displays the trend of total passenger 
comfort in one task period across training episodes. It shows our modified PPO can achieve high passenger comfort comparable to the performance of recent model-based and 
model-free RL algorithms, while DDPG algorithm’s performance going down. MIDDLE: This subplot shows our modified PPO can achieve high passenger safety comparable to the 
performance of recent model-based and model-free RL algorithms. RIGHT: The subplot shows our modified PPO can achieve low time consumption comparable to the performance 
of recent model-based and model-free RL algorithms.
.

 

Table 6
Comparison of the performance for all three perspectives between our modified PPO, 
DDPG, TD-MPC2 and Average TD3 algorithm. It compares the four methods across six 
metrics: energy consumption, energy efficiency, passenger comfort, passenger safety, 
time consumption, and noise impact. The last row shows the percentage difference 
between our modified PPO and DDPG algorithm for each metric. Our modified PPO 
has comparable performance with the latest model-based and model-free RL algorithms.
 Method Energy 

consumption 
(kWh)

Energy 
efficiency 
(m/kWh)

Comfort Safety Time 
(s)

Noise 
(dB)

 

 Ours-all 57.83 206.59 −401.59 −477.55 162 20.55  
 DDPG-all 123.54 99.72 −778.11 −917.69 348 25.01  
 TD-MPC2-all 76.58 156.56 −435.38 −382.53 160 21.59  
 Average 
TD3-all

67.52 172.35 −612.21 −682.55 270 21.39  

 Diff between 
ours and 
DDPG (%)

53.19 51.73 48.39 47.96 53.45 17.83  

Fig. 11. Comparison of average step noise produced by eVTOL flight between our 
modified PPO, DDPG, TD-MPC2 and Average TD3 algorithm. Our modified PPO 
algorithm achieves lower noise level produced by eVTOL flight compared to DDPG 
and TD-MPC2 algorithm. Also, our performance is comparable to the recent model-free 
RL algorithm, Average TD3.

4.4.4. Considering all objectives in one training process
Fig.  12 shows the results from a single RL training process where all 

relevant factors (energy consumption, passenger concerns, and noise 
impact) are simultaneously considered, between our modified PPO, 
DDPG, TD-MPC2 and Average TD3 algorithm. Each subfigure repre-
sents a different objective. The results demonstrate that our RL agent 
could learn better policy that improves all the objectives concurrently.

For quantitative results, Table  6 shows that our method using 
the modified PPO, ‘‘Ours-all’’, consistently outperforms our method 
using DDPG, ‘‘DDPG-all’’, across all six metrics, with notable percent-
age differences highlighting the advantages. Also, our performance is 
comparable to the recent model-based and model-free RL algorithm, 
TD-MPC2 and Average TD3.
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Based on Fig.  12 and Table  6, our results demonstrate that all 
RL algorithms involved in the experiment can learn to optimize all 
objectives simultaneously. There is performance gap, with ‘‘Ours-all’’ 
exhibiting superior learning outcomes across the board, compared to 
DDPG algorithm. Despite these differences, both methods show the 
ability to balance and improve upon the multiple metrics considered 
in the training process.

4.5. Ablation study

In this section, we perform a reward function ablation study to eval-
uate its contribution to task performance. We systematically remove 
certain reward terms and observe the results. The results demonstrate 
how each component contributes to balancing multiple objectives and 
improving the eVTOL flight performance.

4.5.1. Experimental design
We employ a single component removal approach, where we elim-

inate each key component of the reward function individually and 
observe the performance. The complete reward function serves as the 
baseline model for comparison.

• Baseline: uses the full reward function.
• No Out-of-Bound Punish: removes the out-of-bound punishment 
to analyze its importance in boundary control.

• No Energy Optimization: removes the energy optimization com-
ponent to observe changes in energy consumption.

• No Time Optimization: removes the time optimization compo-
nent to evaluate its impact on time efficiency.

• No Passenger Comfort Optimization: removes the passenger 
comfort component to assess its contribution to safety.

• No Passenger Safety Optimization: removes the passenger safety
component to detect its effect on comfort optimization.

• No Noise Optimization: removes the noise control component to 
evaluate noise reduction.

4.5.2. Results and analysis
The experimental results are presented in Table  7 and Fig.  13. 

‘‘Success count’’ means the number of successfully reaching destination 
in 50 𝑘 training episode. ‘‘Out-of-bound termination count’’ means the 
number of episode terminating because of eVTOL flying out of the 
boundary of the simulation environment. We analyze the results in the 
following items.

• No Out-of-Bound Punish: significantly impacts eVTOL flying out 
of the simulation environment boundary termination reduction, 
as removing it leads to an increase in Out-of-Bound termination 
count in Table  7 and no successfully reaching destination in 50k 
training episode.
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Fig. 12. Comparison of the performance for all three perspectives between our modified PPO, DDPG, TD-MPC2 and Average TD3 algorithm. Each subfigure represents a specific 
objective: (a) energy consumption, (b) energy efficiency, (c) passenger comfort, (d) passenger safety, (e) time consumption, and (f) average step noise.
Table 7
Results of reward function ablation study. ‘‘Success count’’ means the number of successfully reaching destination in 50 𝑘 training episode. ‘‘Out-of-bound termination count’’ means 
the number of episode terminating because of eVTOL flying out of the boundary of the simulation environment. 
 Experiment Success count Out-of-bound 

termination 
count

Timeout 
termination 
count

Energy 
consumption 
(kWh)

Passenger 
comfort

Passenger 
safety

Noise level 
(dB)

 

 Baseline 3455 46500 45 48.28 −416.45 −257.55 17.99  
 No out-of-bound 
punish

0 49936 64 N/A N/A N/A N/A  

 No energy 
optimization

3799 46170 31 61.64 −436.75 −303.76 18.34  

 No time optimization 339 49422 239 52.78 −420.06 −343.1 17.52  
 No passenger comfort 
optimization

2987 46957 56 57.99 −452.93 −298.15 18.76  

 No passenger safety 
optimization

3782 46175 43 49.73 −404.26 −424.70 16.3  

 No noise optimization 3617 46305 78 50.18 −427.6 −417.9 20.70  
• No Energy Optimization: increases eVTOL energy consumption 
from the baseline’s 48.28 kWh to 61.64 kWh. It also leads to more 
success counts because the energy punishment during training is 
lessened compared to the baseline. eVTOL finds more successful 
flying paths with higher energy consumption.

• No Time Optimization: achieves 339 successes, much lower than 
the baseline with more timeout terminations.

• No Passenger Comfort Optimization: decreases the eVTOL pas-
senger comfort during flight from −416.45 to −452.93.

• No Passenger Safety Optimization: decreases the eVTOL pas-
senger safety during flight from −257.55 to −424.70.

• No Noise Optimization: increases average noise levels generated 
by eVTOL each training step from 17.99 dB to 20.70 dB.
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5. Discussion and limitations

One focus of our work is on energy optimization, where we intro-
duce a RL reward function design structure for energy consumption and 
energy efficiency. Compared to commonly used methods, our approach 
demonstrates clear advantages. To validate our method, we conduct 
comparative experiments in identical simulation environments against 
other reward functions, with results showing that our method can learn 
better RL policies for reducing energy consumption and enhancing 
energy efficiency. For the other two perspectives, our contribution 
lies in the integration of passenger concerns and environmental noise 
impact as evaluation metrics within the RL reward function. The results 
show that our RL method can improve these objectives, showing its 
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Fig. 13. Experimental results for reward function ablation study. We systematically remove certain reward terms and observe the results. The results demonstrate how each 
component contributes to balancing multiple objectives and improving the eVTOL flight performance. The left figure shows the comparison between baseline and no consumed 
energy punishment experiment. The middle figure shows the comparison between baseline and no passenger safety punishment experiment. The left figure shows the comparison 
between baseline and no passenger comfort punishment experiment.
potential in dealing with multi-objective problem. Among reward func-
tions commonly used by others, the direct design generally outperforms 
the efficiency design in learning better RL policies.

There are limitations associated with our method. First, one notable 
drawback is the slower learning process resulting from a more complex, 
multi-objective reward function. Incorporating additional factors – such 
as energy consumption, timing, safety, comfort, and noise levels – 
broadens the agent’s optimization goals. However, this complexity also 
necessitates more training episodes, longer training times, and the use 
of larger datasets, which can be problematic in real-time RL scenarios 
where time efficiency is crucial. To address these challenges, we have 
employed strategies such as an experience replay buffer, and early 
stopping criteria, to reduce computational overhead. We will investi-
gate more efficient training techniques – such as transfer learning and 
curriculum learning – to improve sample efficiency and shorten training 
durations, all while preserving the comprehensiveness and robustness 
of the learned policies.

Second, the performance limitations may also arise from strict 
penalty rewards that curb the agent’s exploration. These penalties 
can lead to slower routes with higher time costs. Although the agent 
eventually reduces energy consumption, it fails to match methods that 
initially explore faster and more efficient paths. To improve this, we 
could expand the simulation environment, allowing higher velocities 
without causing out-of-bound errors. Curriculum learning can also help 
by starting with simpler tasks and gradually increasing complexity. 
Additionally, easing penalties during early training might encourage 
the agent to explore more diverse options. We plan to investigate more 
flexible reward structures – such as hierarchical RL or human-in-the-
loop feedback – to strike a better balance between effective exploration 
and strict safety requirements.

Third, our method currently rely on training under a single wind 
field condition. Although the results presented in this paper demon-
strate its effectiveness in controlled settings, this approach may limit 
the policy’s generalization capability when faced with the diverse and 
unpredictable wind scenarios encountered in real-world applications. 
To address this, we plan to adopt curriculum learning, starting with 
a single wind field condition and progressively introducing additional 
wind fields with increasing complexity during training. This multi 
wind field training strategy has the advantage of allowing the agent 
to develop more generalized and robust policies, making it better 
equipped to handle varying urban wind conditions. However, it also 
introduces challenges, such as increased training complexity, longer 
training times, and greater difficulty in achieving convergence to an 
optimal policy compared to single wind field training. Despite these 
challenges, we believe that curriculum learning is essential to enhance 
the robustness and adaptability of our method, ensuring reliable eVTOL 
performance in diverse urban environments.

Fourth, although model-free RL works well in complex, changing 
environments, it comes with drawbacks. It often needs many samples, 
making training expensive and time-consuming—especially in eVTOL 
scenarios where each simulation or test is costly. Model-free RL also 
lacks foresight, relying on immediate feedback rather than planning 
multiple steps ahead. This short-term focus may hinder its ability to 
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achieve long-term goals, such as reducing energy use over long flights. 
A potential solution is to combine model-free and model-based RL 
into a hybrid approach. In predictable conditions, using a model-based 
method can improve efficiency and speed up learning. In less pre-
dictable conditions, such as fast-changing wind, the system can switch 
back to model-free RL to avoid errors from poor models. By blending 
these methods, we leverage their strengths, improving adaptability, 
efficiency, and overall performance in eVTOL flight control.

Our method faces challenges in real-world eVTOL scenarios, such as 
navigating through urban traffic congestion and performing emergency 
rescue missions. Training the multi-objective policy in simulation re-
quires significant computational resources due to complex rewards and 
extensive exploration. However, once trained, the policy is lightweight 
and practical for deployment on embedded hardware. In urban con-
gestion scenarios, the policy must efficiently optimize flight paths to 
minimize delays while adhering to noise and safety constraints. In 
emergency rescues, it must prioritize rapid response and safe naviga-
tion through dynamic environments. To meet such real-time demands, 
we refine the policy using techniques like pruning, quantization, and 
compression, reducing latency and enabling smooth operation on on-
board processors. Hardware accelerators, such as low-power GPUs or 
inference units, further enhance speed. We also explore strategies like 
hierarchical policies for task prioritization and knowledge distillation to 
streamline optimization. By tailoring the method to these specific ap-
plications, we ensure adaptability and robustness across diverse eVTOL 
scenarios, addressing real-world constraints effectively.

We claim that our RL task is a long-horizon problem due to the 
flight distance (10 kilometers) involved. Unlike larger aircraft, current 
commercial manned eVTOL vehicles have a lower velocity range (60 
m/s), requiring a large number of action steps to complete the task 
successfully. This increases the learning difficulty and reduces the 
exploration success rate, which is reflected in the sparsity of data points 
in the results.

Our results for the ‘‘ours-all’’ method demonstrate that traditional 
approaches, such as linear combination or scalarization of reward 
functions, can be sufficiently powerful to optimize multiple objec-
tives simultaneously. This insight aligns with existing aircraft-related 
work and underscores the robustness of our approach. Despite man-
aging six different objectives within our mixed code, the outcomes 
remain promising, validating the potential of our method in complex, 
multi-objective optimization scenarios.

6. Conclusion and future work

We introduce a DRL-based method for eVTOL flight 3D motion 
planning in urban environments with wind fields, emphasizing the 
optimization of energy conservation, passenger concerns, and noise 
impact on the urban environment. Our approach significantly tailors 
the PPO algorithm (Schulman et al., 2017) to learn better policies that 
balance these critical factors. We design a reward structure specifi-
cally aimed at reducing energy consumption and enhancing energy 
efficiency, which has proven to outperform commonly used design 
methods by conducting comparative experiments. Additionally, we 
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integrate passenger comfort and safety, as well as noise impact, into 
the RL reward function. The results demonstrate that our method can 
learn better policy to improve these objectives simultaneously, offering 
a comprehensive solution for the multi-objective problem in eVTOL 
flight planning. Overall, our approach has shown to be effective and 
efficient in improving energy conservation, passenger experience, and 
minimizing noise impact on the urban environment during eVTOL 
flight motion planning.

There are many future research directions. First, we plan to extend 
our technique to multi-eVTOL systems to study collaborative flight 
optimization in urban wind fields. Second, various origin–destination 
demand patterns (as a result of different flight tasks) of eVTOL will be 
investigated. Lastly, we aim to explore the joint study of air mobility 
and ground mobility in large-scale, mixed traffic settings (Li et al., 
2017; Wang et al., 2023b, 2024; Villarreal et al., 2024).
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