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Swarm Robotic Flocking With Aggregation
Ability Privacy

Shuai Zhang , Yunke Huang , Weizi Li , and Jia Pan , Senior Member, IEEE

Abstract— We address the challenge of achieving flocking
behavior in swarm robotic systems without compromising the
privacy of individual robots’ aggregation capabilities. Tradi-
tional flocking algorithms are susceptible to privacy breaches,
as adversaries can deduce the identity and aggregation abilities
of robots by observing their movements. We introduce a novel
control mechanism for privacy-preserving flocking, leveraging
the Laplace mechanism within the framework of differential
privacy. Our method mitigates privacy breaches by introducing
a controlled level of noise, thus obscuring sensitive information.
We explore the trade-off between privacy and utility by varying
the differential privacy parameter ϵ. Our quantitative analysis
reveals that ϵ ≤ 0.13 represents a lower threshold where
private information is almost completely protected, whereas
ϵ ≥ 0.85 marks an upper threshold where private information
cannot be protected at all. Empirical results validate that our
approach effectively maintains privacy of the robots’ aggregation
abilities throughout the flocking process.

Note to Practitioners—This paper was motivated by the prob-
lem of preserving privacy of individual robots in a swarm robotic
system. Existing approaches to address this issue generally
consider that accomplishing complex tasks requiring explicit
information sharing between robots, while explicit communica-
tion in public channel carries the risk of information leakage.
It is not always like this in real adversarial environments,
and this assumption restricts the investigation of privacy in
autonomous systems. This paper suggests that an individual
robot can use its sensors onboard to perceive states of other
neighbors in a distributed way without explicit communication.
Despite avoiding information leakage during explicit information
sharing between robots, the configuration of swarm can still
reveal sensitive information about the ability of each robot. In this
paper, we propose a privacy-preserving approach for flocking
control using the Laplace mechanism based on the concept of
differential privacy. The solution prevents an adversary with
full knowledge of the swarm’s configuration from learning the
sensitive information of individual robots, thus ensuring the
security of swarm robots in terms of sensitive information during
ongoing missions.
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I. INTRODUCTION

S IMULATING collective behaviors such as birds flocking
and fish schooling have attracted great attention from

the robotics community. These collective movements show
that impressive global behaviors can emerge from limited
local interactions between individuals and their environment
[1], [2]. This recognition has inspired the development of
decentralized swarm robotic systems to perform collective
tasks that cannot be accomplished by a single robot or are
performed more efficiently by a swarm robotic system [3],
[4], [5], [6], [7], [8], [9], [10]. Despite the scalability, flex-
ibility, and robustness provided by decentralization, privacy
remains poorly addressed in swarm robotics. This is because
individual robots in a swarm do not seem to be private entities
who naturally wish to preserve the confidentiality of their
data when performing collective tasks specified by a human
designer.

Privacy is becoming an important issue in swarm robotic
systems, especially in adversarial scenarios [11]. For example,
a robot’s motion can reveal sensitive information about its
role within the group, allowing an adversary to recognize
the leader and carry out an accurate attack [12]. Similar
risks arise in tracking privacy or target privacy, where a
swarm robotic system is expected to track a sequence of
way-points or targets that are considered private information
[13], [14], [15]. We underscore that security is an essential
element of swarm control systems. It guarantees the privacy of
control strategies and individual attributes, thereby preventing
any adverse effects on the system’s performance and upholding
the integrity of the swarm’s autonomous operations.

We endeavor to attain flocking behavior within a swarm
robotic system, with a particular focus on preserving the
privacy of each robot. We address the scenario wherein the
protection of an individual robot’s private information, specif-
ically its aggregation ability, is paramount. The concept of
aggregation ability encompasses constraints such as sensing
range, minimum execution space, and safety clearance. The
aggregation ability is selected to be privacy-sensitive due to its
direct correlation with the strategic positioning and movement
patterns of the robot swarm. The potential leakage of such
private information could facilitate malicious interference,
adversaries may exploit this vulnerability to devise targeted
attack policies, thereby precipitating security breaches and
potentially disastrous consequences. We are now facing a
dilemma: on one hand, we need to generate the flocking
behavior by using the database consisting of every robot’s
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private information (aggregation ability); on the other hand,
we need to make sure that no adversary can infer the pri-
vate information of any individual robot from the available
configuration observed.

Our premise is that the configuration of swarm robots can
reveal sensitive information about each robot’s ability (e.g.,
aggregation abilities) even though the information leakage can
be avoided if there is no explicit communication between
robots, thus it is necessary to propose a privacy-preserving
controller for swarm robotic flocking. This is a crisply formu-
lated instance of the broader requirement of preserving privacy
in swarm robotic applications: the robots can achieve complex
tasks in a distributed fashion without explicit communication,
thus avoiding information leakage during information sharing.
However, the configurations of group, the behavioral differ-
ence between robots, as well as the specific moving patterns
can also reveal sensitive information of individual robots in
an implicit way. Our contributions are as follows.

• We emphasize that the configuration of swarm flocking
can reveal the sensitive information about individual
robots’ aggregation abilities even though the information
leakage caused by explicit communication between robots
is avoided.

• We developed a differentially private mechanism that is
independent from swarm size to protect the aggregation
ability privacy of individual robots in swarm robotic
flocking.

• We provided a theoretical analysis of how to set the
sensitivity of Laplace mechanism with respect to the
aggregation ability privacy.

• We found that an adversary’s ability to infer the aggre-
gation ability of a changing robot decreases as the value
of the differential privacy parameter ϵ decreases. Specif-
ically, ϵ ≤ 0.13 represents a lower bound where private
information is almost completely protected, while ϵ ≥

0.85 marks an upper threshold where private information
cannot be protected at all.

The remainder of this paper is organized as follows. The
related work is reviewed and compared to our work in
Section II. In Section III the basic assumptions, the threat
model of an adversary, the notation of differential privacy as
well as the problem formulation are formalized in prelimi-
naries. In Section IV we present the system model of swarm
robotic flocking. In Section V, we propose the differentially
private swarm robotic flocking algorithm. In Section VI,
a series of numerical simulations are carried out to demonstrate
the effectiveness of the proposed scheme, followed by a
discussion on the general requirement of a privacy-preserving
mechanism in swarm robotic systems. Finally, we conclude
the paper in Section VIII.

II. RELATED WORK

Huge amounts of data including image, video, audio, and
text are ubiquitously generated every second, and it is becom-
ing a great challenge to protect sensitive information when
sharing them. In the last few years, the notion of differen-
tial privacy has emerged essentially as a standard privacy
specification, which is originally proposed in [16]. It presents
that a system is made differentially private by randomizing
its answers in such a way that the published outputs are not

too sensitive to the data provided by any single participant.
It is proved that such differentially private scheme based on
random mechanisms makes it difficult for an adversary to infer
about individual records from the published outputs, or even
to detect the presence of an individual in the database. As a
result, sensitive information about individuals is differentially
preserved. Differential privacy plays a key role in balancing
the trade-off between data sharing and data privacy. It differs
from our common understanding of privacy, here the privacy
is measured on a level that changes continuously.

The concept of differential privacy has been widely used in
industry [17], [18], [19]. For example, in privacy-aware traffic
flow prediction, the traffic sensor data are usually stored by
different organizations or parties, which implies impracticable
data sharing due to concerns of privacy [20]. Data to be
released to the public are also sensitive in large-scale medical
databases due to confidentiality and privacy concerns [21].
The requirement to preserve privacy in government agencies is
more serious than that in industry because government agen-
cies typically need to take great potential risks of information
leakage whenever they publish statistics based on their data
collected from organizations, parties, and individuals [22].
Various differentially private mechanisms have been proposed
to address these requirements. We refer interested readers
to [23] for more details about the concept of differential
privacy and its applications.

As large swarm robotic systems become more widespread,
concerns are growing about the collection and use of sensitive
data obtained from individual robots [24]. These issues are
increasingly important in adversarial scenarios, where indi-
vidual robots must share private information to achieve coor-
dination and collective motion at the group level. However,
information sharing carries the risk of information leakage,
making privacy preservation in swarm robotics an inevitable
issue. Although necessary, swarm robotic researchers rarely
study it.

Several works have emerged using the concept of differ-
ential privacy in swarm robotics in recent years. In [25], the
authors focused on the role privacy of heterogeneous robots in
a swarm. They proposed a macroscopic privacy model based
on differential privacy to keep information about individual
robot types private and preserve security and resilience against
adversaries. More recently, the work in [12] studied a specific
leader-follower structure for private flocking control with
swarm robots in terms of role privacy. They aimed to protect
the leader’s identity, which is considered sensitive information.
The research on role privacy is designed to conceal the specific
roles of individual robots within heterogeneous swarms from
adversaries. Nonetheless, swarm robotic systems typically
utilize homogeneous robots, which operate anonymously to
execute tasks collectively. Consequently, in such scenarios, the
concern for role privacy becomes redundant.

Another important area of study is tracking privacy and
target privacy, where robots are controlled to track preference
vectors or specific targets in a privacy-preserving manner.
In [13], the authors considered a swarm system where each
robot has a sequence of private way-points and a local
controller designed to track them. They used the Laplace
mechanism for data sharing, where each robot shares noisy
versions of its state information with others, preventing any
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TABLE I
A SUMMARY OF PRIVACY STUDY IN ROBOTIC SYSTEMS

robot from precisely estimating the aggregate state of the
system. Although the performance of the swarm system was
worse than that under perfect information sharing, tracking
privacy was preserved. Similar attempts were reported in [14],
which derived from the panda tracking problem. Here, the
robot must maintain estimates of the panda’s pose, but leaked
information that is too precise poses an unexpected intrusion
and hazard. A powerful adversary with access to the full
history of information is interested in obtaining the panda’s
location. The problem here is the dilemma of tracking a target
while preserving its position privacy. The work in [15] pro-
posed a framework for generating privacy-aware trajectories
in multi-robot coverage control applications, creating altered
paths to conceal the goal of robots from adversaries. The
authors in [26] developed an optimized differential privacy
scheme with reinforcement learning to establish a balance
between location privacy and semantic security. The research
on tracking privacy and target privacy is designed to obfuscate
the objectives of robots dependent on extrinsic assignments.
However, the fundamental characteristics of robots cannot be
concealed during the task.

The third area is the optimal consensus with respect to
privacy, which has attracted the attention of robotic researchers
[27], [28], [29], [30]. To achieve consensus, robots must
exchange their state information with each other on a public
channel. Adversaries can monitor the public channel and
obtain the private information of individual robots, leading to
a significant risk of information leakage. One study addressed
this privacy requirement in the optimal consensus problem
by using differential privacy and event-trigger schemes, pre-
serving the privacy of the cost function of each robot during
the consensus computation [29]. From the perspective of
optimization [31], [32], existing swarm intelligence algorithms
can be developed into the corresponding private versions by
considering the concept of differential privacy. The inves-
tigation into such privacy preservation dilemmas relies on
explicit information sharing, where the agents are required to

reciprocate their state data or individual cost metrics mutually.
While these solutions are efficacious in safeguarding the pri-
vacy of individual functions, it becomes untenable in scenarios
prohibiting the exchange of information.

Our work differs from previous studies in several ways,
as summarized in Table I. First, unlike [12], [25], we focus
on swarms with homogeneous robots with strong anonymity,
eliminating the need for role privacy. The swarm robotic
flocking adopts a leaderless framework that generates flocking
patterns rather than using a leader-follower scheme. Second,
previous works [13], [14], [27], [28], [29], [30], [31], [32]
relied on explicit information sharing and required robots
to share noisy versions of their states using a randomized
mechanism to achieve tracking privacy, target privacy, con-
sensus and optimization. In contrast, our work aims to achieve
privacy-preserving flocking behavior without explicit informa-
tion sharing, as a focal robot can use its sensors onboard to
perceive the states of other neighbors in a distributed way
without explicit communication. Despite avoiding information
leakage during explicit information sharing between robots,
the swarm’s configuration can still reveal sensitive information
about each robot’s ability. To this end, our focus is to propose
a solution that can protect the swarm system from an adversary
with full knowledge of the swarm’s configuration to learn the
sensitive information of individual robots.

III. PRELIMINARIES

In this section, we present the basic assumptions, the threat
model of an adversary, the general notation of differential
privacy, and then we formulate the problem.

A. Basic Assumptions
We consider swarm robotic flocking with cohesion prefer-

ence, where individual robots generate flocking behavior by
implicitly aggregating with others. The flocking configuration
is influenced by each individual robot’s aggregation ability.
It is defined as follows.
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Fig. 1. Illustration of aggregation abilities of individual robots with respect
to flocking pattern.

Definition 1 (Aggregation ability): The aggregation ability
is an intrinsic property of a robot, influenced by constraints
such as sensing range, minimum execution space, and safety
clearance. This ability dictates the closest distance to neigh-
boring robots in a flocking configuration and is considered
confidential information for each robot.

As shown in Fig. 1, robots with strong aggregation abilities
generate a compact configuration that has a small area cov-
erage and a short nearest neighboring distance, while those
with weaker aggregation abilities generate a looser configu-
ration that has a greater area coverage and a longer nearest
neighboring distance. We consider only the distance between
robots as an indication of aggregation ability, because it can
reveal aspects of the flocking strategy and adaptive behaviors
that are proprietary to our control algorithm.

A swarm of n robots can generate a stable flocking pattern
from an initial distribution with a limited time t0 under the
following assumptions:

• The aggregation ability is a robot’s private information;
• The stable flocking configuration is solely determined by

the aggregation abilities of all group members;
• There is no explicit information exchange between robots,

the adversaries cannot collect confidential messages car-
rying aggregation ability information of individual robots;

• However, the adversaries can infer aggregation ability of
individual robots after t0 by observing the stable flocking
configuration.

B. Threat Model

It is assumed that information leakage will not occur during
information exchange since there is no information sharing
between robots. However, an adversary can still infer private
information of individual robots by observing the stable flock-
ing configuration. In this work, we assume a highly-capable
adversary, as described in [15], that

• possesses complete knowledge of the configuration of
swarm robotic system;

• knows the global position of every robot in the flocking
group;

• knows the aggregation model of flocking control but has
no idea of each robot’s control parameter.

To better demonstrate the performance of our approach,
we assume that there is only one changing robot that has a
different aggregation ability. The goal of the adversary is to
infer

• Which robot has a different aggregation ability?
• What is the aggregation ability of this robot?

The adversary uses one known privacy attack policy as
follows:

1) Changing Robot Inference: Since the adversary is aware
of the global positions of all robots in the flocking group,
it can thus determine the nearest neighboring distance of each
individual robot based on this information. Let us denote
the set of nearest neighboring distances as D = {di }

n
i=1,

representing the adversary’s observation. We can define the
degree of deviation from the mean value to measure the
discrepancy between the robot i and the other robots:

pi =
|di − d̄|

6σ
, (1)

where d̄ and σ are the mean and the standard deviation of
observation D. A greater pi suggests that the robot i is so
different from other robots that it is more likely to be the
changing robot. The robot with index c is then identified as
the changing robot with respect to

c = arg max{pi }, i ∈ {1, · · · , n}. (2)

2) Aggregation Ability Inference: The aggregation ability
of a robot can be approximately estimated by its nearest
neighboring distance and the total number of group members.
The adversary can approximately infer the aggregation ability
of the changing robot by

a∗

c ≈
n
4

d2
c , (3)

where a∗
c characterizes the changing robot’s aggregation ability

and dc is the nearest neighboring distance of the inferred
changing robot. Please refer to Eq. (20) for more details of
the derivation.

C. Differential Privacy

The notion of differential privacy has essentially emerged as
a standard privacy specification [16]. It presents that a system
is made differentially private by randomizing its answers in
such a way that the published outputs are not too sensitive
to the data provided by any single participant. To apply the
concept of differential privacy into the swarm robotic flocking
system, we provide some basic definitions and theorems about
differential privacy as follows:

Definition 2 (Aggregation ability database): A set A =

{ai }
n
i=1, where ai determines the aggregation ability of the

robot i , is defined as the database that contains the information
of aggregation abilities of swarm robots.

Definition 3 (Adjacent databases [33]): Two databases
A = {ai }

n
i=1 and A′

= {a′

i }
n
i=1 are said to be adjacent if and

only if there exists one different element between the two
databases, i.e., there exists k ∈ {1, · · · , n} such that ak ̸= a′

k
and ai = a′

i for all i ̸= k.
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In the framework of differential privacy, the output to be
released to the public that we compute from a database is
modelled by q(A) for some mapping q that acts on A.
A mechanism approximating q that acts on a database is said
to be differentially private if it guarantees that two adjacent
databases are almost indistinguishable from the observation of
the output. Concretely,

Definition 4 (ϵ-Differential privacy [16]): Given ϵ ≥ 0,
a mechanism M preserves ϵ-differential privacy if for all R ⊆

range(M) and all adjacent databases A and A′, it holds that

Pr [M(A) ∈ R] ≤ eϵ
· Pr [M(A′) ∈ R]. (4)

where ϵ ≥ 0 controls the privacy level, and ϵ = 0 means per-
fect privacy while ϵ → ∞ refers to non-privacy.R denotes the
set of all possible outputs, and Pr [·] measures the probability
of outputs.

For two adjacent databases A and A′ with respect to
aggregation abilities of robots, the sensitivity, a concept that
can describe the maximal difference of a function applied to
the adjacent database, is defined as follows.

Definition 5 (Sensitivity [16]): The sensitivity of a differ-
entially private mechanism M about aggregation ability in the
flocking system is

1u(t) = max
A,A′

∥M(A, t) − M(A′, t)∥1, (5)

where 1u is the sensitivity in terms of control input under the
control mechanism M . ∥x∥1 =

∑|x |

i=1 |xi | is the l1 norm of a
database x . ∥x − y∥1 is the l1 distance between two databases
x and y, and for the two adjacent databases A and A′, we have
∥A − A′

∥1 = |ak − a′

k | with ak ̸= a′

k and k ∈ {1, · · · , n}.
Proposition 1: The sensitivity of a differentially private

mechanism M about aggregation ability in terms of velocity
and position are:

1v(t) = 1u(t) · dt,

1x(t) = 1v(t) · dt = 1u(t) · (dt)2, (6)

where dt is the time interval in the discrete system model.
Proof: See Appendix. ■

D. Problem Formulation

Let ai ∈ A represent the aggregation ability of the robot i ,
then the problem of preserving aggregation ability privacy in
swarm robotic flocking in terms of ϵ-differential privacy can
be defined as:

Problem: Given ϵ ≥ 0, design a mechanism M for the
flocking controller that is able to ensure

Pr [M(A) ∈ R] ≤ eϵ
· Pr [M(A′) ∈ R] (7)

for all R ⊆ range(M) and all adjacent databases A and A′.
Here M(A) = {u[M]

i (ai )}
n
i=1 is the set of improved controllers

for all robots that lead to the stable flocking configuration
under the database A. In other words, the proposed scheme
needs to ensure that the probability of detecting a small change
in the aggregation ability of one robot from observation should
be very low.

IV. SYSTEM MODEL

This work models a flocking system in R2 using the
following integro-differential aggregation equation:

ρt + ∇ · (ρv) = 0,

v = −∇K ∗ ρ, (8)

where ∇ means gradient, ρ represents aggregation density,
K denotes inter-agent interaction potential and ∗ denotes
convolution. The aggregation model can be rewritten as an
agent-based model with pairwise interaction among n agents
in R2:

ẋi = −

∑
j∈[N ]

∇i K (xi − x j ), i = 1, · · · , n, (9)

where xi (t) is the position of the agent i at time t , and
[N ] denotes the set of interaction neighbors within a limited
sensing range δs . The sensing coverage area for each individual
robot is defined by the range and field of view of the on-board
sensors. We model this as a circular area centered on the robot,
with a radius determined by the maximum effective range of
the sensors. This equation can be used to model aggregations
in swarm robotics that behave like flocking systems, such as
bird flocks, fish schools, and bacterial colonies. We can extend
this aggregation model to the double integrator system

ẋi = vi ,

v̇i = ui ,

ui = −

∑
j∈[N ]

∇i K (xi − x j ) − ∇iU vis, i = 1, · · · , n. (10)

Here, in addition to the interaction between robots, a viscous
potential U vis

=
1
2ξvT

i vi is introduced to stabilize the second-
order system. The viscous force is described by a damping
term proportional to speed −∇iU vis

= −ξvi . The viscous
force has no effect on the robots’ stable configuration.

Aggregation in a flocking system is mainly determined by
the interaction potential function K . In this study, the function
in Eq. (11) is utilized to obtain a flocking system [34]:

K (x) = −a ln ∥x∥ +
1
2
∥x∥

2, (11)

where ∥x∥ represents the relative distance between two robots,
and interactions depend only on this distance rather than
actual robot locations. The robots’ flocking behavior can be
described by the interaction potential and the viscous potential
as follows:

ẋi = vi ,

v̇i = ui , i = 1, · · · , n,

ui =

∑
j∈[N ]

(
ai

∥xi − x j∥
− ∥xi − x j∥)

xi − x j

∥xi − x j∥
− ξvi , (12)

where ai > 0 is a parameter in each robot’s local controller
that determines the aggregation ability of the robot i .

V. DIFFERENTIALLY PRIVATE ALGORITHM

Under the stable configuration, the parameter ai in the
dynamics Eq. (12) determines the radius of flocking system
and the distance between adjacent robots given total number
of robots. Thus, it characterizes the ability of each robot to
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aggregate to generate the flock pattern. If an adversary can
observe the configuration of the flocking system, they may
accurately infer the aggregation ability of an individual robot
by observing the distance between adjacent robots. To this
end, our goal is to design a differentially private mechanism
for the flocking controller that hides the aggregation ability of
individual robots.

A. Privacy-Preserving Flocking Control
We are proposing a differentially private mechanism for the

flocking system using the Laplace mechanism. The Laplace
mechanism is one commonly used differentially private mech-
anism. It works by introducing additive noise into the query q
that has the Laplace distribution.

Theorem 1: For the flocking system given by Eq. (12),
let 1u be the sensitivity of mechanism M , then the mech-
anism M = {ui + w}

n
i=1 with w ∼ Lap(1u/ϵ, n) preserves

ϵ-differential privacy.
Here Lap(λ, n) means a n-dimensional random vector x

obeys the laplace distribution with parameter λ (and zero
mean), and its probability distribution function satisfies

p(x) = (
1

2λ
)n exp(−

∥x∥1

λ
). (13)

Proof: Given ai ∈ A, the control input ui in Eq. (12) can
be rewritten as

ui (ai , t) = fi (ai , t) + fi (t),

fi (ai , t) =

∑
j∈[N ]

ai

(
xi (t) − x j (t)

∥xi (t) − x j (t)∥2

)
,

fi (t) = −

∑
j∈[N ]

(
xi (t) − x j (t)

)
− ξvi (t). (14)

For two adjacent databases A = {ai }
n
i=1 and A′

= {a′

i }
n
i=1 with

ak ̸= a′

k and ai = a′

i for all i ̸= k, according to Eq. (5), the
sensitivity of the mechanism M can be derived as

1u(t) = max
A,A′

∥M(A, t) − M(A′, t)∥1

= max
i∈{1,··· ,n}

n∑
i=1

|ui (ai , t) − ui (a′

i , t)|

= max
k∈{1,··· ,n}

|uk(ak, t) − uk(a′

k, t)|

= max
k∈{1,··· ,n}

|fk(ak, t) + fk(t) − fk(a′

k, t) − fk(t)|

= max
k∈{1,··· ,n}

|fk(ak, t) − fk(a′

k, t)|. (15)

Let pa and pa′ denote the probability density function of
M(A, u, ϵ) and M(A′, u, ϵ) respectively. Compare the two at
some arbitrary point z ∈ R2

pa(z)
pa′(z)

=
n
5
i=1

exp(
−ϵ|fi (ai ,t)+fi (t)−zi |

1u(t) )

exp(
−ϵ|fi (a′

i ,t)+fi (t)−zi |

1u(t) )


= 5

i=1
exp

(
ϵ(|fi (a′

i , t) + fi (t) − zi | − |fi (ai , t) + fi (t) − zi |)

1u(t)

)
≤

n
5
i=1

exp
(

ϵ|fi (ai , t) − fi (a′

i , t)|
1u(t)

)

= exp
(

ϵ∥f(A, t) − f(A′, t)∥1

1u(t)

)
= exp

(
ϵ|fk(ak, t) − fk(a′

k, t)|
1u(t)

)
, (16)

where the inequality follows from the triangle inequality as
reported in [35]. According to Eq. (15), we have

1u(t) ≥ |fk(ak, t) − fk(a′

k, t)|

⇒ exp
(

ϵ|fk(ak, t) − fk(a′

k, t)|
1u(t)

)
≤ exp(ϵ). (17)

We then have

pa(z)
pa′(z)

≤ exp
(

ϵ|fk(ak, t) − fk(a′

k, t)|
1u(t)

)
≤ exp(ϵ). (18)

Thus, the mechanism preserves ϵ-differential privacy with
respect to aggregation ability. ■

Remark 1: According to Eq. (6), the sensitivity in terms
of u can be equivalently expressed by v and x, therefore,
Theorem 1 holds when u is also replaced by v or x.

B. Sensitivity in Flocking System

In this work, it is assumed that a swarm of robots can
generate a stable flocking pattern from an initial distribution
with a limited time t0. The aggregation ability cannot be
accurately inferred in unstable states during 0 < t < t0.
To this end, the sensitivity under stable state (flocking pattern)
is derived.

Theorem 2: For the flocking system with Eq. (12), given the
adjacency relation by |di − d ′

i | ≤ r1 − r0, where {(r0, r1) : 0 <

r0 < r1} are the minimum and maximum nearest neighbor
distance a robot can maintain, di and d ′

i are the nearest
neighboring distance of the robot i under the two adjacent
databases A and A′, respectively; then the sensitivity of the
Laplace mechanism M is 1u =

n(r2
1 −r2

0 )

4r0
.

Proof: Without loss of generality, we assume that one
of two adjacent aggregation ability databases has the same
value for all its components, while allowing only one different
component for its adjacent database. Specifically, we have A =

{a, · · · , a, a}
n and A′

= {a, · · · , a, a′
}

n with a ̸= a′. In such
case, the robots aggregate and form a uniformly distributed
flocking system, converging into a stable configuration with
the following three properties, as proven in [34]:

1) The density ρ is uniform within a disk and zero outside;
2) For any robot position xi (t) and given the swarm center

c(t), there exists t0 such that ∥xi (t) − c(t)∥ ≤ R holds
for all t ≥ t0, where R is less than the upper bound
radius of the disk, Rup =

√
a;

3) Increasing the number of robots does not affect the
radius or shape of the flock.

The distance between two adjacent robots is solely deter-
mined by the aggregation abilities of the robots given the group
size of a flock. From this point, the equivalent area principle is
used to calculate the relation between the nearest neighboring
distance and the aggregation ability. At the stable state, given
the radius R of the distribution disk, the number of robots n,
and the nearest neighboring distance d (it is nearly the same
for all robots in a uniformly distributed flock), there exists an
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Fig. 2. The equivalent area principle for obtaining the relation between the
private space d and the parameter a. (A) Under the ideal condition, the flock
with Eq. (12) will spread into a loose pattern via a hexagonal close packing.
(B) The Voronoi diagram of the flocking system. (C) The equivalent area
principle derived from the hexagonal close packing. n = 100, a = 20002.

equivalent area description as follows:

π R2
= n · π(

d
2
)2

+ πs1

π R2
= π R2

up − πs2. (19)

As shown in Fig. 2(A-B), the flocking system with Eq. (12)
will spread into a loose pattern via a hexagonal close pack. The
pattern shows that each robot has a similar nearest neighboring
distance d as the density is uniform inside the disk. The
diagram in Fig. 2 (C) presents the equivalent area principle.
Here πs1 denotes the area of gaps among n flocking robots
inside the disk with radius of R. πs2 denotes the area of
difference caused by the real radius R and the upper bound
Rup. Substituting Rup =

√
a to Eq. (19) yields

a = n
d2

4
+ s1 + s2. (20)

For an adjacent database A′, only one robot has a different
aggregation ability in the flock, which means s1 and s2 could
be considered unchanged. Therefore, we also have

a′
= n

d ′2

4
+ s1 + s2 (21)

Now we can derive the sensitivity under the stable state as:

1u = max
A,A′

∥M(A, t) − M(A′, t)∥1

= max
i∈{1,··· ,n}

n∑
i=1

∣∣ui (ai , t) − ui (a′

i , t)
∣∣

= max
i∈{1,··· ,n}

n∑
i=1

∣∣fi (ai , t) − fi (a′

i , t)
∣∣

= max
i∈{1,··· ,n}

n∑
i=1

∑
j∈[N ]

∣∣∣∣ ai

∥xi (t) − x j (t)∥
−

a′

i

∥xi (t) − x j (t)∥

∣∣∣∣
= max

i∈{1,··· ,n}

∣∣∣∣ a − a′

∥xi (t) − x j (t)∥

∣∣∣∣
= max

i∈{1,··· ,n}

∣∣∣∣ n(d2
− d ′2)

4∥xi (t) − x j (t)∥

∣∣∣∣

= max
i∈{1,··· ,n}

n(r2
1 − r2

0 )

4∥xi (t) − x j (t)∥

=
n(r2

1 − r2
0 )

4r0
(22)

■
The sensitivity based on the Laplace mechanism, captures

the magnitude by which a single robot can change the stable
configuration in the worst case. Intuitively, the uncertainty
introduced into the flocking controller hides the aggregation
ability of a single robot. Theorem 2 presents that how much we
must perturb the outcome of proposed mechanism to preserve
an individual robot’s aggregation ability privacy characterised
by nearest neighboring distance |di − d ′

i | ≤ r1 − r0. It also
theoretically demonstrates that our proposed mechanism is
effective in preserving aggregation ability privacy of swarm
robotic flocking, i.e., despite the observation of a stable flock-
ing configuration, an adversary cannot determine the nearest
neighboring distance (aggregation ability) of any robot exactly
except that it lies within [r0, r1].

C. Measuring the Level of Aggregation Ability Privacy

Differential privacy differs from the common understand-
ing of privacy, since it measures the level of privacy that
changes continuously from perfect privacy to non-privacy.
Taking inspiration from [13], we define a cost function to
evaluate the level of aggregation ability privacy in the flocking
system. The basic idea is that the difference between one
robot’s neighboring distance and that of the other robots
implies the robot’s aggregation ability and could be a clue
for an adversary making inferences. Therefore, the difference
between the nearest neighboring distance of an individual
robot and the mean value of the robot group using the square
error is used as the cost function.

The cost function for the robot i under the differentially
private mechanism M is:

cost[M]

i (t) = E
[(

di (t) − d̄(t)
)2

]
, (23)

where di (t) is the nearest neighboring distance of the robot i
at time t , d̄(t) is the mean value of all di (t), and E denotes
mathematical expectation.

The cost function under the original control policy (non-
private mechanism) u is:

cost[u]

i (t) =
(
di (t) − d̄(t)

)2
. (24)

Level of aggregation ability privacy by mechanism M is
defined as the supremum in the change of one robot’s cost
over all databases relative to the non-private mechanism:

Pspace = max
i∈{1,··· ,n}

(
cost[M]

i (t) − cost[u]

i (t)
)
. (25)

In practice, a swarm robotic system can converge to the
flocking pattern in a very short time, thus our approach can
make a critical difference in preserving privacy of swarm
robotics in flocking behavior, with a limited time not an infinite
time. Generally, a higher Pspace indicates better privacy, but
this value will decrease as the system approaches a steady
state over time.
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Fig. 3. The level of aggregation ability privacy for different number of
robots n, differential privacy parameter ϵ and time horizon T . (A) The level
of privacy versus n (ϵ = 1). (B) The level of privacy versus ϵ (n = 100).
(C) The level of privacy versus T (n = 100, ϵ = 1). (D) The snapshots and
trajectories of robots in three phases (n = 100, ϵ = 1).

VI. RESULTS AND DISCUSSION

Consider a swarm system in which each robot is a mass
point on 2D plane moving with Eq. (12). Unless otherwise
stated, the robots have vmax = 20 mm/s, umax = 100 mm/s2,
ζ = 0.2, r0 = 200 mm, r1 = 400 mm, and a limited sensing
range δs = 1000 mm. To better demonstrate the performance
of our approach, we assume that there is only one robot
that has a different aggregation ability while the others are
characterized by the same value a = 20002. The objective
of the adversary is to accurately infer which one is the
changing robot and what its aggregation ability is as much as
possible. On the other hand, the goal of the privacy-preserving
mechanism is to hide the changing robot and to prevent the
adversary from accurately inferring the aggregation ability of
the changing robot.

A. Level of Aggregation Ability Privacy

We first study the level of aggregation ability privacy with
simulation-based analysis. Each simulation is implemented
30 independent runs, and we record the level of aggregation
ability privacy for different number of robots n, differential
privacy parameter ϵ and time horizon T . The statistical results
are shown in Fig. 3.

From Fig. 3A, as n increases from 20 to 200, the level
of aggregation ability privacy is nearly unchanged. It means
the level of privacy is independent of number of robots,
demonstrating that the proposed privacy-preserving flocking
controller with respect to aggregation ability privacy is scalable
to the swarm size. The level of aggregation ability privacy
and its variance increase with the decrease of the differential
privacy parameter ϵ, as shown in Fig. 3B. This demonstrates
that more privacy is preserved when ϵ becomes smaller.
Fig. 3C shows the level of aggregation ability privacy versus
time horizon, where the robots are initially deployed as a

tight cluster. The flocking process can be characterized by
three phases: separation, aggregation, and flocking, as shown
in Fig. 3D. Repulsive force and attractive force dominate the
separation phase and the aggregation phase, resulting in the
dispersion and the aggregation of robots, respectively. Note
that, under the phases of separation and aggregation, robots
are in situations prior to the flocking configuration. The level
of privacy is relatively higher and the aggregation ability
cannot be accurately inferred at these unstable states. However,
there is a significant decrease of privacy when robots get
close to the flocking configuration (i.e., a relatively uniform
distribution of robots as shown by Voronoi diagram in Fig. 3D,
t = 150 s). This implies that an adversary may accurately
infer the aggregation abilities of robots when they are in
a flocking configuration, necessitating a safe controller to
preserve aggregation ability privacy.

B. Comparison Results
Using the threat model described in Eq. (1)-(3), we evaluate

the performance of differentially private mechanism in terms
of preserving aggregation ability privacy during swarm robotic
flocking. According to the concept of differential privacy, this
can be done by evaluating the probability that a small change
in the aggregation ability of one robot is detected from the
observation. The baseline is given by changing one robot’s
aggregation ability and see the inference results without the
differentially private mechanism.

As shown in Fig. 4A, a swarm robotic system without
differentially private mechanism is in its flocking configuration
with ac = 21002 for the changing robot and a = 20002 for the
other robots. The nearest neighboring distance of this changing
robot can be easily identified according to the observation D
(see threat model in preliminaries), as shown by the red line
in Fig. 4(a2). The adversary can obtain every robot’s degree
of deviation with this observation, and the result shows that
the greatest degree of deviation (pc = 0.94) exactly points
to the changing robot (denoted by the red line), indicating
the adversary can accurately infer which one is the changing
robot. Note that despite the aggregation ability is determined
by a, the value of

√
a has a more straightforward physical

meaning about aggregation ability (i.e., the maximum area
robots can aggregate). Compared to

√
ac = 2000, the inferred

value
√

a∗
c = 2132 is close enough, thus the adversary can

also accurately infer the aggregation ability of this changing
robot. Similar results can be obtained when the parameter
of aggregation ability of the changing robot is decreased to
ac = 19002, as shown in Fig. 4B. The result shows that the
greatest degree of deviation (pc = 0.92) exactly points to
the changing robot (denoted by the red line), indicating the
adversary can again accurately infer which one is the changing
robot. Furthermore, the adversary also has a relatively accurate
inference about the aggregation ability of changing robot,
√

a∗
c = 1949 is close to

√
ac = 1900.

The results with differentially private mechanism are shown
in Fig. 5. From Fig. 5A-C, it is see that when ac = 21002, the
inference results depend on the parameter ϵ. When ϵ = 10
or above, the swarm robotic system is totally incapable of
hiding the changing robot and its aggregation ability: (1) the
adversary can accurately infer which one is the changing robot
because the changing robot exactly has the greatest degree
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Fig. 4. The results of swarm robotic flocking without the privacy-preserving mechanism. (A) The flocking configuration and the inference results with
ac = 21002 for the changing robot and a = 20002 for the other robots. (B) The flocking configuration and the inference results with ac = 19002 for the
changing robot and a = 20002 for the other robots. n = 100 for both cases. Illustrative videos can be found in the supplementary material.

Fig. 5. The results of swarm robotic flocking with the privacy-preserving mechanism. The flocking configuration and the inference results with (A) ϵ = 10
(B) ϵ = 1 (C) ϵ = 0.2, ac = 21002 for the changing robot and a = 20002 for the other robots. (D) The flocking configuration and the inference results with
ϵ = 0.2, ac = 19002 for the changing robot and a = 20002 for the other robots. n = 100 for all cases. Illustrative videos can be found in the supplementary
material.

of deviation (pc = 0.70), and (2) the inferred aggregation
ability

√
a∗

c = 2072 is close to
√

ac = 2100. If decrease the
parameter to ϵ = 1, the swarm robotic system can partially
hide the changing robot and its aggregation ability: (1) the
adversary can only accurately infer which one is the changing
robot because the greatest degree of deviation pc = 0.35

points to the changing robot, (2) however, it cannot accu-
rately infer the changing robot’s aggregation ability because
the inferred

√
a∗

c = 1886 is far away from the practical
√

ac = 2100. The swarm robotic system is totally capable
of hiding the changing robot and its aggregation ability when
the parameter is decreased to ϵ = 0.2 or lower. In such case,
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the adversary can neither correctly find the changing robot, nor
its corresponding aggregation ability, because (1) the greatest
degree of deviation (pc = 0.33) points to one of normal robots
(denoted by the blue line and the blue point) and (2) the
aggregation ability of the changing robot is mistakenly inferred
via this normal robot. A similar conclusion can be obtained
when the aggregation ability parameter of the changing robot
is decreased to ac = 1900. For example, when ϵ = 0.2,
the swarm robotic system is totally capable of hiding the
changing robot and its aggregation ability because it makes
the adversary mistakenly identify the changing robot (the
greatest degree of deviation (pc = 0.30) points to one of
normal robots denoted by the blue line and the blue point)
and its corresponding aggregation level. In other words, the
influence of parameter ϵ on the inference results demonstrates
that the proposed scheme can continuously protect the level
of aggregation ability privacy.

C. Effect of ϵ on Inference Results

We further evaluate the dynamic changes in the rate of
discovery of private information caused by successive changes
in ϵ. The quantitative correlation between inference results and
ϵ is demonstrated by two measures:

• Accuracy of changing robot inference specifies the infer-
enc accuracy of the adversary using the threat model
described in Eq. (2) to identify the changing robot. Let
δ =

k
K represent the number of successful inferences k

out of the total simulation runs K .
• Aggregation ability inference specifies the aggregation

ability of the inferred changing robot. Let
√

a∗
c represent

the inferred aggregation ability, where c is the index of
the inferred changing robot, as determined by the threat
model in Eq. (3).

We repeat our evaluations 100 times for each value of ϵ in
the range [0.01, 1], and summarize the inference results of the
adversary under both baseline flocking and private flocking.
Fig. 6 shows that under baseline flocking, the adversary
using the threat model described in Eq. (1)-(3) can identify
the changing robot with 100% accuracy, and has a 0.1%
margin of error in inferring the aggregation ability of the
changing robot, calculated as (2103 − 2100)/2100. Under
private flocking, Fig. 6A shows that the adversary can identify
the changing robot with 100% accuracy when ϵ ≥ 0.85,
but with only 6% or less accuracy when ϵ ≤ 0.13. The
adversary’s ability to accurately identify the changing robot
decreases as the value of ϵ decreases. We conclude that ϵ ≤

0.13 represents a lower threshold where private information
is almost completely protected, while ϵ ≥ 0.85 marks an
upper threshold where private information cannot be protected
at all. Fig. 6B shows that the adversary has a 12% margin of
error in inferring the aggregation ability of the changing robot,
calculated as (2100−1844)/2100. This represents a significant
privacy enhancement in terms of aggregation ability. Overall,
despite a swarm robotic system using the differentially private
mechanism can only reach a relative steady state instead of
a stable state using a non-private mechanism, our proposed
approach can effectively protect the aggregation ability privacy
of individual robots while maintaining a flocking behavior,
which is beyond the capacity of the basic flocking control.

Fig. 6. The effects of the differential privacy parameter ϵ on the adversary’s
inference results. The effect of successive changes in ϵ on (A) the accu-
racy of changing robot inference and (B) the aggregation ability inference.
√

ac = 2100 for the changing robot,
√

a = 2000 for the other robots, and
n = 100. We take 100 independent runs for each value of ϵ = [0.01 : 1].

D. Discussion

The aggregation ability privacy in flocking behaviors pro-
vides a good opportunity to study differential privacy in swarm
robotic systems. Along with privacy concerns resulting from
explicit information sharing, such as role privacy, tracking
privacy, target privacy, and optimal consensus privacy, the
aggregation ability privacy discussed in this work suggests that
the swarm’s configuration can also reveal sensitive informa-
tion about each robot’s preferences, even when there is no
information exchange. This is particularly relevant when tasks
require collective motions in a specific formation, such as the
uniform distribution. While the notation of differential privacy
primarily focuses on concealing the aggregation ability of one
robot, we demonstrate that aggregation ability privacy is a
more challenging issue when multiple robots have different
aggregation abilities than others. Developing a proof for pri-
vacy preservation to multiple robots is still an open question.

As shown in Fig. 7, robots with strong aggregation abilities
move towards the group center in a flocking system, while
those with weak aggregation abilities move towards the
boundary. This outcome is independent of the differentially
private mechanism used. It suggests that the differentially
private mechanism has limitations in protecting a robot
group’s aggregation abilities. Adversaries can easily identify
which group of robots have strong or weak aggregation
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Fig. 7. The configuration of swarm robots reveal sensitive information about the aggregation abilities of robots. Illustrative videos can be found in the
supplementary material.

Fig. 8. Experiments using 30 e-puck robots in the Webots simulation environment. (A) Snapshots of one experiment illustrating swarm robotic flocking
control. (B) Swarm robotic flocking without the privacy-preserving mechanism. (C) Swarm robotic flocking with the privacy-preserving mechanism. A video
of all experiments is available in the supplementary material.

abilities, and to what degree their abilities differ from others.
This is a unique problem of aggregation ability privacy in
flocking system. To address more general issues concerning

role privacy and relative position privacy in swarm robotic
systems, more sophisticated privacy-preserving mechanisms
may be necessary.
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VII. EXPERIMENTS

We utilized 30 e-puck robots [36] to conduct experiments in
the Webots simulation environment [37]. These experiments
served as a proof of concept to validate our approach. The
e-puck robot operates using a differential-drive platform, con-
trolled by its linear and angular velocities, as detailed in [9],
[10]. Key specifications include a diameter of 0.071 meters,
a height of 0.050 meters, a wheel radius of 0.020 meters,
and an axle length of 0.052 meters. The robot is capable
of a maximum forward/backward speed of 0.15 m/s and a
maximum rotational speed of 7.536 rad/s. For our experiments,
we set r0 = 0.2 m, r1 = 0.4 m, ϵ = 0.1, ζ = 0.2, and
δs = 1 m. Notably, one robot exhibited a different aggregation
ability with a = 1.200, while the others were assigned the
same value of a = 1.000. All robots were initially deployed
in a square area of 0.5 m × 0.5 m for each experimental
run. We conducted a series of experiments, all of which
produced similar outcomes. The snapshots of one experiment
are illustrated in Fig. 8A, where all robots had the same
aggregation ability.

Fig. 8B shows the swarm robotic flocking control without a
differential privacy mechanism. The results indicate that the
nearest neighboring distance of the changing robot can be
easily identified, as marked by the red line. The highest degree
of deviation (pc = 0.43) precisely points to the changing
robot, enabling the adversary to accurately identify it. The
inferred value a∗

c = 1.128 is close to ac = 1.200, allowing
the adversary to correctly infer the aggregation ability of the
changing robot.

In contrast, Fig. 8C displays the results with the differential
privacy mechanism. The swarm robotic system effectively
conceals the changing robot and its aggregation ability. The
adversary is unable to correctly identify the changing robot or
its corresponding aggregation ability. Specifically, the highest
degree of deviation points to a normal robot, and the aggre-
gation ability of the changing robot is incorrectly inferred
via this normal robot (indicated by the blue line). Overall,
the comparison results of experiments with 30 e-puck robots
confirm that our approach effectively maintains the privacy of
robots’ aggregation abilities throughout the flocking process.
A video of all experiments is available in the supplementary
material.

VIII. CONCLUSION AND FUTURE WORK

This work addresses the problem of swarm robotic flocking
and aggregation ability privacy. Our objective is to conceal
the private aggregation ability of each robot from adversaries,
thereby preventing them from accurately inferring which robot
changes its aggregation ability and its corresponding level.
To achieve this, we propose a differentially private mechanism
based on the Laplace mechanism. The results demonstrate
that an adversary’s ability to infer the aggregation ability of
a changing robot decreases as the value of the differential
privacy parameter ϵ decreases. Specifically, ϵ ≤ 0.13 repre-
sents a lower threshold where private information is almost
completely protected, whereas ϵ ≥ 0.85 marks an upper
threshold where private information cannot be protected at
all. Future work will explore differentially private mechanisms
for more general problems, including role privacy and relative
position privacy in swarm robotic systems.

APPENDIX

Proof: We take velocity as an example:

1v(t) = max
A,A′

∥v(A, t) − v(A′, t)∥1

= max
i∈{1,··· ,n}

n∑
i=1

|vi (ai , t) − vi (a′

i , t)|

= max
k∈{1,··· ,n}

|vk(ak, t) − vk(a′

k, t)| (26)

It is seen that

vk(ak, t) = vk(ak, t − dt) + uk(ak, t)dt
vk(a′

k, t) = vk(a′

k, t − dt) + uk(a′

k, t)dt (27)

Assume that vk(ak, 0) = vk(a′

k, 0), then we have

vk(ak, t) − vk(a′

k, t) =
(
uk(ak, t) − uk(a′

k, t)
)
dt (28)

Substitute Eq. (28) into Eq. (26), we then have

1v(t) = max
k∈{1,··· ,n}

|vk(ak, t) − vk(a′

k, t)|

= dt · max
k∈{1,··· ,n}

|uk(ak, t) − uk(a′

k, t)|

= 1u(t) · dt (29)

A similar proof process can be envisioned when the position
is considered for the sensitivity analysis. ■
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